AN ALTERNATIVE METHOD OF CONCEPT LEARNING

被引:0
作者
Wang, Sen [1 ]
Fang, Qingxiang [2 ]
Feng, Jun-E [1 ]
机构
[1] Shandong Univ, Sch Math, Jinan 250100, Peoples R China
[2] China Jiliang Univ, Sch Sci, Hangzhou 310018, Zhejiang, Peoples R China
关键词
concept learning; version space; semi-tensor product; target concept; all possible hypotheses; BOOLEAN CONTROL NETWORKS;
D O I
10.1017/S1446181116000316
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We solve the problem of concept learning using a semi-tensor product method. All possible hypotheses are expressed under the framework of a semi-tensor product. An algorithm is raised to derive the version space. In some cases, the new approach improves the efficiency compared to the previous approach.
引用
收藏
页码:211 / 219
页数:9
相关论文
共 8 条
[1]  
Cheng D., 2001, Science in China Series: Information Sciences, V44, P195, DOI DOI 10.1007/BF02714570
[2]   Stability and stabilization of Boolean networks [J].
Cheng, Daizhan ;
Qi, Hongsheng ;
Li, Zhiqiang ;
Liu, Jiang B. .
INTERNATIONAL JOURNAL OF ROBUST AND NONLINEAR CONTROL, 2011, 21 (02) :134-156
[3]   A Linear Representation of Dynamics of Boolean Networks [J].
Cheng, Daizhan ;
Qi, Hongsheng .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2010, 55 (10) :2251-2258
[4]   Controllability and observability of Boolean control networks [J].
Cheng, Daizhan ;
Qi, Hongsheng .
AUTOMATICA, 2009, 45 (07) :1659-1667
[5]   QUANTIFYING INDUCTIVE BIAS - AI LEARNING ALGORITHMS AND VALIANTS LEARNING FRAMEWORK [J].
HAUSSLER, D .
ARTIFICIAL INTELLIGENCE, 1988, 36 (02) :177-221
[6]  
Mitchell T. M., 1977, IJCAI 77 P 5 INT JOI, V1, P305
[7]  
Mitchell T. M., 1997, MACH LEARN, pXVII
[8]   Input-state incidence matrix of Boolean control networks and its applications [J].
Zhao, Yin ;
Qi, Hongsheng ;
Cheng, Daizhan .
SYSTEMS & CONTROL LETTERS, 2010, 59 (12) :767-774