Uniform growth of ZnS nanoflakes for high-performance supercapacitor applications

被引:106
作者
Hussain, Iftikhar [1 ]
Mohapatra, Debananda [1 ]
Dhakal, Ganesh [1 ]
Lamiel, Charmaine [1 ,2 ]
Sayed, Mostafa Saad [1 ,3 ]
Sahoo, Sumanta [1 ]
Mohamed, Saad Gomaa [1 ,4 ]
Kim, Jong Su [5 ]
Lee, Yong Rok [1 ]
Shim, Jae-Jin [1 ]
机构
[1] Yeungnam Univ, Sch Chem Engn, Gyongsan 38541, Gyeongbuk, South Korea
[2] Univ Queensland, Sch Chem Engn, Brisbane, Qld, Australia
[3] Egyptian Petr Res Inst, Anal & Evaluat Dept, Cairo 11727, Egypt
[4] Tabbin Inst Met Studies TIMS, Min & Met Engn Dept, Helwan 109, Cairo 11421, Egypt
[5] Yeungnam Univ, Dept Phys, Gyongsan 38541, Gyeongbuk, South Korea
关键词
ZnS; Nanoflake; Single-step synthesis; Supercapacitor; LED; NICKEL FOAM; ELECTRODE MATERIALS; OXIDE NANONEEDLES; HIGH-POWER; NI-FOAM; SULFIDE; ION; COMPOSITES; NANOSTRUCTURES; ARRAYS;
D O I
10.1016/j.est.2021.102408
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
The cost-effective, efficient, and straightforward synthesis of materials for supercapacitor applications has attracted considerable attention for practical applications. In this study, thin zinc sulfide (ZnS) nanoflakes were grown on nickel foam by a facile single-step hydrothermal method. The resulting ZnS electrode delivered a high specific capacity of 659 C g(-1) at 2 A g(-1) and excellent cycling stability. It could function as a positive electrode in KOH electrolyte for high-performance supercapacitors. The device exhibited a remarkable specific capacity of 154 C g(-1), high specific energy of 30 Wh kg(-1), high specific power of 14 kW kg(-1), and only a 4% decrease in the capacitance retention over 2000 cycles. Additionally, two serially connected asymmetric supercapacitor devices powered 52 red light-emitting diodes connected closely with 100 s.
引用
收藏
页数:8
相关论文
共 58 条
[1]   Morphological and phase stability of zinc blende, amorphous and mixed core-shell ZnS nanoparticles [J].
Barnard, A. S. ;
Feigl, C. A. ;
Russo, S. P. .
NANOSCALE, 2010, 2 (10) :2294-2301
[2]   Fabrication of ZnS nanoparticles and nanorods with cubic and hexagonal crystal structures: a simple solvothermal approach [J].
Biswas, Subhajit ;
Kar, Soumitra .
NANOTECHNOLOGY, 2008, 19 (04)
[3]   Atomic layer deposition of vanadium oxide on carbon nanotubes for high-power supercapacitor electrodes [J].
Boukhalfa, Sofiane ;
Evanoff, Kara ;
Yushin, Gleb .
ENERGY & ENVIRONMENTAL SCIENCE, 2012, 5 (05) :6872-6879
[4]   Layer-structured nanohybrid MoS2@rGO on 3D nickel foam for high performance energy storage applications [J].
Bulakhe, Ravindra N. ;
Van Hoa Nguyen ;
Shim, Jae-Jin .
NEW JOURNAL OF CHEMISTRY, 2017, 41 (04) :1473-1482
[5]   Tetragonal Phase Germanium Nanocrystals in Lithium Ion Batteries [J].
Cho, Yong Jae ;
Im, Hyung Soon ;
Kim, Han Sung ;
Myung, Yoon ;
Back, Seung Hyuk ;
Lim, Young Rok ;
Jung, Chan Su ;
Jang, Dong Myung ;
Park, Jeunghee ;
Cha, Eun Hee ;
Cho, Won Il ;
Shojaei, Fazel ;
Kang, Hong Seok .
ACS NANO, 2013, 7 (10) :9075-9084
[6]   Synthesis for Yolk-Shell-Structured Metal Sulfide Powders with Excellent Electrochemical Performances for Lithium-Ion Batteries [J].
Choi, Seung Ho ;
Kang, Yun Chan .
SMALL, 2014, 10 (03) :474-478
[7]   Positive Electrode Materials for Li-Ion and Li-Batteries [J].
Ellis, Brian L. ;
Lee, Kyu Tae ;
Nazar, Linda F. .
CHEMISTRY OF MATERIALS, 2010, 22 (03) :691-714
[8]   High energy density and low self-discharge of a quasi-solid-state supercapacitor with carbon nanotubes incorporated redox-active ionic liquid-based gel polymer electrolyte [J].
Fan, Le-Qing ;
Tu, Qiu-Mei ;
Geng, Cheng-Long ;
Huang, Jian-Ling ;
Gu, Yun ;
Lin, Jian-Ming ;
Huang, Yun-Fang ;
Wu, Ji-Huai .
ELECTROCHIMICA ACTA, 2020, 331
[9]   Electrodeposition of polyaniline on three-dimensional graphene hydrogel as a binder-free supercapacitor electrode with high power and energy densities [J].
Gao, Shuya ;
Zhang, Li ;
Qiao, Yadong ;
Dong, Pei ;
Shi, Jun ;
Cao, Shaokui .
RSC ADVANCES, 2016, 6 (64) :58854-58861
[10]   Carbon nanotube/metal-sulfide composite flexible electrodes for high-performance quantum dot-sensitized solar cells and supercapacitors [J].
Gopi, Chandu V. V. Muralee ;
Ravi, Seenu ;
Rao, S. Srinivasa ;
Reddy, Araveeti Eswar ;
Kim, Hee-Je .
SCIENTIFIC REPORTS, 2017, 7