Temperature Dependence of the Nitrogen-Vacancy Magnetic Resonance in Diamond

被引:538
作者
Acosta, V. M. [1 ]
Bauch, E. [1 ,2 ]
Ledbetter, M. P. [1 ]
Waxman, A. [3 ]
Bouchard, L-S. [4 ]
Budker, D. [1 ,5 ]
机构
[1] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA
[2] Tech Univ Berlin, D-10623 Berlin, Germany
[3] Ben Gurion Univ Negev, Dept Phys, IL-84105 Beer Sheva, Israel
[4] Univ Calif Los Angeles, Dept Chem & Biochem, Los Angeles, CA 90095 USA
[5] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Nucl Sci, Berkeley, CA 94720 USA
基金
美国国家科学基金会;
关键词
ATOMIC MAGNETOMETER; DEFECT CENTERS; SPIN; MICROSCOPY; NMR;
D O I
10.1103/PhysRevLett.104.070801
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The temperature dependence of the magnetic-resonance spectra of nitrogen-vacancy (NV(-)) ensembles in the range of 280-330 K was studied. Four samples prepared under different conditions were analyzed with NV(-) concentrations ranging from 10 ppb to 15 ppm. For all samples, the axial zero-field splitting (ZFS) parameter D was found to vary significantly with temperature, T, as dD/dT = -74.2(7) kHz/K. The transverse ZFS parameter E was nonzero (between 4 and 11 MHz) in all samples, and exhibited a temperature dependence of dE/(EdT) = -1.4(3) x 10(-4) K(-1). The results might be accounted for by considering local thermal expansion. The temperature dependence of the ZFS parameters presents a significant challenge for diamond magnetometers and may ultimately limit their bandwidth and sensitivity.
引用
收藏
页数:4
相关论文
共 34 条
  • [1] Diamonds with a high density of nitrogen-vacancy centers for magnetometry applications
    Acosta, V. M.
    Bauch, E.
    Ledbetter, M. P.
    Santori, C.
    Fu, K. -M. C.
    Barclay, P. E.
    Beausoleil, R. G.
    Linget, H.
    Roch, J. F.
    Treussart, F.
    Chemerisov, S.
    Gawlik, W.
    Budker, D.
    [J]. PHYSICAL REVIEW B, 2009, 80 (11):
  • [2] Polarization-selective excitation of nitrogen vacancy centers in diamond
    Alegre, Thiago P. Mayer
    Santori, Charles
    Medeiros-Ribeiro, Gilberto
    Beausoleil, Raymond G.
    [J]. PHYSICAL REVIEW B, 2007, 76 (16):
  • [3] Nanoscale imaging magnetometry with diamond spins under ambient conditions
    Balasubramanian, Gopalakrishnan
    Chan, I. Y.
    Kolesov, Roman
    Al-Hmoud, Mohannad
    Tisler, Julia
    Shin, Chang
    Kim, Changdong
    Wojcik, Aleksander
    Hemmer, Philip R.
    Krueger, Anke
    Hanke, Tobias
    Leitenstorfer, Alfred
    Bratschitsch, Rudolf
    Jelezko, Fedor
    Wrachtrup, Joerg
    [J]. NATURE, 2008, 455 (7213) : 648 - U46
  • [4] Balasubramanian G, 2009, NAT MATER, V8, P383, DOI [10.1038/nmat2420, 10.1038/NMAT2420]
  • [5] BOUCHARD LS, ARXIV09112533V1
  • [6] Optical magnetometry
    Budker, Dmitry
    Romalis, Michael
    [J]. NATURE PHYSICS, 2007, 3 (04) : 227 - 234
  • [7] Clarke J., 2004, SQUID HDB, V1
  • [8] Carbon nanotube superconducting quantum interference device
    Cleuziou, J. -P.
    Wernsdorfer, W.
    Bouchiat, V.
    Ondarcuhu, T.
    Monthioux, M.
    [J]. NATURE NANOTECHNOLOGY, 2006, 1 (01) : 53 - 59
  • [9] LUMINESCENCE QUENCHING AND ZERO-PHONON LINE BROADENING ASSOCIATED WITH DEFECT INTERACTIONS IN DIAMOND
    DAVIES, G
    CROSSFIELD, M
    [J]. JOURNAL OF PHYSICS C-SOLID STATE PHYSICS, 1973, 6 (05): : L104 - L108
  • [10] Hyperfine interaction in the ground state of the negatively charged nitrogen vacancy center in diamond
    Felton, S.
    Edmonds, A. M.
    Newton, M. E.
    Martineau, P. M.
    Fisher, D.
    Twitchen, D. J.
    Baker, J. M.
    [J]. PHYSICAL REVIEW B, 2009, 79 (07):