ANALYSIS OF AN ALTERNATING DIRECTION METHOD APPLIED TO SINGULARLY PERTURBED REACTION-DIFFUSION PROBLEMS

被引:0
|
作者
Linss, Torsten [1 ]
Madden, Niall [2 ]
机构
[1] Tech Univ Dresden, Inst Numer Math, D-01062 Dresden, Germany
[2] Natl Univ Ireland, Sch Math Stat & Appl Math, Galway, Ireland
关键词
reaction-dirusion problems; layer-adapted meshes; alternating directions; singular perturbation; UNIFORM-CONVERGENCE; PARAMETER; SCHEME; MESH;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We present an analysis of an Alternating Direction Implicit (ADI) scheme for a linear, singularly perturbed reaction-diffusion equation. By providing an expression for the error that separates the temporal and spatial components, we can use existing results for steady-state problems to give a succinct analysis for the time-dependent problem, and that generalizes for various layer-adapted meshes. We report the results of numerical experiments that support the theoretical findings. In addition, we provide a numerical comparison between the ADI and Euler techniques, as well details of the computational advantage gained by parallelizing the algorithm.
引用
收藏
页码:507 / 519
页数:13
相关论文
共 50 条
  • [1] A fitted numerical method for singularly perturbed parabolic reaction-diffusion problems
    Munyakazi, Justin B.
    Patidar, Kailash C.
    COMPUTATIONAL & APPLIED MATHEMATICS, 2013, 32 (03) : 509 - 519
  • [2] Convergence Analysis of the LDG Method for Singularly Perturbed Reaction-Diffusion Problems
    Mei, Yanjie
    Wang, Sulei
    Xu, Zhijie
    Song, Chuanjing
    Cheng, Yao
    SYMMETRY-BASEL, 2021, 13 (12):
  • [3] A fitted numerical method for singularly perturbed parabolic reaction-diffusion problems
    Justin B. Munyakazi
    Kailash C. Patidar
    Computational and Applied Mathematics, 2013, 32 : 509 - 519
  • [4] An analysis of overlapping domain decomposition methods for singularly perturbed reaction-diffusion problems
    Kumar, Sunil
    Kumar, Mukesh
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2015, 281 : 250 - 262
  • [5] The parameter uniform numerical method for singularly perturbed parabolic reaction-diffusion problems on equidistributed grids
    Gowrisankar, S.
    Natesan, Srinivasan
    APPLIED MATHEMATICS LETTERS, 2013, 26 (11) : 1053 - 1060
  • [6] A robust numerical scheme for singularly perturbed parabolic reaction-diffusion problems via the method of lines
    Mbroh, Nana A.
    Munyakazi, Justin B.
    INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2022, 99 (06) : 1139 - 1158
  • [7] A New Numerical Scheme for Singularly Perturbed Reaction-Diffusion Problems
    Temel, Zelal
    Cakir, Musa
    GAZI UNIVERSITY JOURNAL OF SCIENCE, 2023, 36 (02): : 792 - 805
  • [8] A modified graded mesh and higher order finite element method for singularly perturbed reaction-diffusion problems
    Kaushik, Aditya
    Kumar, Vijayant
    Sharma, Manju
    Sharma, Nitika
    MATHEMATICS AND COMPUTERS IN SIMULATION, 2021, 185 : 486 - 496
  • [9] An alternating direction scheme on a nonuniform mesh for reaction-diffusion parabolic problems
    Clavero, C
    Jorge, JC
    Lisbona, F
    Shishkin, GI
    IMA JOURNAL OF NUMERICAL ANALYSIS, 2000, 20 (02) : 263 - 280
  • [10] A numerical method for a system of singularly perturbed reaction-diffusion equations
    Matthews, S
    O'Riordan, E
    Shishkin, GI
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2002, 145 (01) : 151 - 166