Resistivity dominated by surface scattering in sub-50 nm Cu wires

被引:129
作者
Graham, R. L. [1 ]
Alers, G. B. [1 ]
Mountsier, T. [2 ]
Shamma, N. [2 ]
Dhuey, S. [3 ]
Cabrini, S. [3 ]
Geiss, R. H. [4 ]
Read, D. T. [4 ]
Peddeti, S. [5 ]
机构
[1] Univ Calif Santa Cruz, Dept Phys, Santa Cruz, CA 95064 USA
[2] Novellus Syst, San Jose, CA 95134 USA
[3] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94710 USA
[4] Natl Inst Stand & Technol, Boulder, CO 80305 USA
[5] Clarkson Univ, Dept Chem & Biomol Engn, Potsdam, NY 13676 USA
关键词
copper; electrical resistivity; electron backscattering; electron beam lithography; electron diffraction; electron mean free path; grain boundaries; interconnections; masks; nanolithography; nanowires; surface roughness; surface scattering; IMPURITY INCORPORATION; COPPER; TRANSPORT;
D O I
10.1063/1.3292022
中图分类号
O59 [应用物理学];
学科分类号
摘要
Electron scattering mechanisms in copper lines were investigated to understand the extendibility of copper interconnects when linewidth or thickness is less than the mean free path. Electron-beam lithography and a dual hard mask were used to produce interconnects with linewidths between 25 and 45 nm. Electron backscatter diffraction characterized grain structure. Temperature dependence of the line resistance determined resistivity, which was consistent with existing models for completely diffused surface scattering and line-edge roughness, with little contribution from grain boundary scattering. A simple analytical model was developed that describes resistivity from diffuse surface scattering and line-edge roughness.
引用
收藏
页数:3
相关论文
共 20 条
[1]  
Alers G.B., 2006, SEMICONDUCTOR INT, V29, P38
[2]  
Chambers R. G., 1950, PROC R SOC LON SER-A, V202, P378, DOI [10.1098/rspa.1950.0107, DOI 10.1098/RSPA.1950.0107]
[3]   Stochastic simulation studies of molecular resists [J].
Drygiannakis, D. ;
Patsis, G. P. ;
Raptis, I. ;
Niakoula, D. ;
Vidali, V. ;
Couladouros, E. ;
Argitis, P. ;
Gogolides, E. .
MICROELECTRONIC ENGINEERING, 2007, 84 (5-8) :1062-1065
[4]   Three-Dimensional Measurement of Line Edge Roughness in Copper Wires Using Electron Tomography [J].
Ercius, Peter ;
Gignac, Lynne M. ;
Hu, C. -K. ;
Muller, David A. .
MICROSCOPY AND MICROANALYSIS, 2009, 15 (03) :244-250
[5]   The conductivity of thin metallic films according to the electron theory of metals [J].
Fuchs, K .
PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 1938, 34 :100-108
[6]  
Geiss RH, 2009, AIP CONF PROC, V1173, P154, DOI 10.1063/1.3251212
[7]   Electronic Transport on the Nanoscale: Ballistic Transmission and Ohm's Law [J].
Homoth, J. ;
Wenderoth, M. ;
Druga, T. ;
Winking, L. ;
Ulbrich, R. G. ;
Bobisch, C. A. ;
Weyers, B. ;
Bannani, A. ;
Zubkov, E. ;
Bernhart, A. M. ;
Kaspers, M. R. ;
Moeller, R. .
NANO LETTERS, 2009, 9 (04) :1588-1592
[8]   Electrical properties of superfilled sub-micrometer silver metallizations [J].
Josell, D ;
Burkhard, C ;
Li, Y ;
Cheng, YW ;
Keller, RR ;
Witt, CA ;
Kelley, DR ;
Bonevich, JE ;
Baker, BC ;
Moffat, TP .
JOURNAL OF APPLIED PHYSICS, 2004, 96 (01) :759-768
[10]   Size-Dependent Resistivity in Nanoscale Interconnects [J].
Josell, Daniel ;
Brongersma, Sywert H. ;
Tokei, Zsolt .
ANNUAL REVIEW OF MATERIALS RESEARCH, 2009, 39 :231-254