Self-diffusion in single component liquid metals: a case study of mercury

被引:0
作者
Szabo, Sandro [1 ,2 ,3 ]
Yang, Fan [3 ]
Lohstroh, Wiebke [1 ,2 ]
Petry, Winfried [1 ,2 ]
机构
[1] Tech Univ Munich, Heinz Maier Leibnitz Zentrum MLZ, Lichtenbergstr 1, D-85748 Garching, Germany
[2] Tech Univ Munich, Phys Dept, Lichtenbergstr 1, D-85748 Garching, Germany
[3] Deutsch Zentrum Luft & Raumfahrt DLR, Inst Mat Phys Weltraum, D-51170 Cologne, Germany
关键词
self-diffusion; liquid metals; quasielastic neutron scattering; COLLECTIVE DYNAMICS; DENSE LIQUIDS; TEMPERATURE; VISCOSITY; TETRAMETHYLSILANE; IRON;
D O I
10.1088/1361-648X/ac0d83
中图分类号
O469 [凝聚态物理学];
学科分类号
070205 ;
摘要
We report the temperature dependent atomic dynamics in mercury investigated with quasi-elastic neutron scattering between 240 and 350 K. The self-diffusivity follows an Arrhenius behavior over the entire investigated temperature range, with an activation energy of 41.8 +/- 1.4 meV. The standard deviation is in the order of 5%, significantly more precise than previously reported measurements in the literature. Similar to alkali metal melts, the self-diffusion coefficient close to the melting point can be predicted with an effective atom radius of 1.37 angstrom. This shows a dominant contribution from the repulsive part of the interatomic potential to the mass transport. We observed deviations from the Stokes/Sutherland-Einstein relation and indications of an increasing collective nature of the dynamics with decreasing temperature. Thus, a transport mechanism of uncorrelated binary collisions cannot fully describe the temperature dependence of the self-diffusion.
引用
收藏
页数:7
相关论文
共 65 条
[1]  
Andrade END, 1934, PHILOS MAG, V17, P497
[2]  
Andreas M., 2015, EPJ WEB C, V83, P01002, DOI [10.1051/epjconf/20158301002, DOI 10.1051/EPJCONF/20158301002]
[3]   DENSE-GAS FORMULATION OF SELF-DIFFUSION OF LIQUID METALS [J].
ASCARELLI, P ;
PASKIN, A .
PHYSICAL REVIEW, 1968, 165 (01) :222-+
[4]   Reference Data for the Density and Viscosity of Liquid Cadmium, Cobalt, Gallium, Indium, Mercury, Silicon, Thallium, and Zinc [J].
Assael, Marc J. ;
Armyra, Ivi J. ;
Brillo, Juergen ;
Stankus, Sergei V. ;
Wu, Jiangtao ;
Wakeham, William A. .
JOURNAL OF PHYSICAL AND CHEMICAL REFERENCE DATA, 2012, 41 (03)
[5]   Cage diffusion in liquid mercury [J].
Badyal, YS ;
Bafile, U ;
Miyazaki, K ;
de Schepper, IM ;
Montfrooij, W .
PHYSICAL REVIEW E, 2003, 68 (06) :612081-612087
[6]   In-situ diffusivity measurement technique [J].
Banish, RM ;
Jalbert, LB .
GRAVITATIONAL EFFECTS IN MATERIALS AND FLUID SCIENCES, 1999, 24 (10) :1311-1320
[7]  
Bee M., 1988, QUASIELASTIC NEUTRON
[8]   Application of the embedded atom model to liquid mercury [J].
Belashchenko, D. K. .
HIGH TEMPERATURE, 2013, 51 (01) :40-48
[9]   COLLECTIVE DYNAMICS IN LIQUID CESIUM NEAR THE MELTING-POINT [J].
BODENSTEINER, T ;
MORKEL, C ;
GLASER, W ;
DORNER, B .
PHYSICAL REVIEW A, 1992, 45 (08) :5709-5720
[10]   X-RAY-DIFFRACTION STUDY OF LIQUID MERCURY OVER TEMPERATURE-RANGE 173-K TO 473-K [J].
BOSIO, L ;
CORTES, R ;
SEGAUD, C .
JOURNAL OF CHEMICAL PHYSICS, 1979, 71 (09) :3595-3600