Finishing characteristics of Inconel alloy 625 bars in ultra-precision magnetic abrasive finishing using CNC machine center

被引:7
作者
Bae, Jung Tak [1 ]
Kim, Han Joo [1 ,2 ]
机构
[1] Jeonbuk Natl Univ, Dept Convergence Technol Engn, Jeonju 54896, South Korea
[2] Jeonbuk Natl Univ, Ecofriendly Machine Parts Design Ctr, Jeonju 54896, South Korea
基金
新加坡国家研究基金会;
关键词
CNC machine center; Ultra-precision magnetic abrasive finishing; Inconel alloy 625; Surface roughness; Finishing depth; TOOLS;
D O I
10.1007/s12206-021-0608-y
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
An ultra-precision magnetic abrasive finishing (UPMAF) process is an efficient mirror finishing technique. This research utilized the ultra-precision magnetic abrasive finishing technique to improve the accuracy of advanced material of Inconel alloy 625 cylindrical bars. The finishing technique employed flexible unbonded magnetic abrasive tools with neodymium permanent magnets (Nd-Fe-B), and components of the finishing procedure were installed with a five-dimensional computer numerical control (CNC) machining center. The surface accuracy and dimensional accuracy of Inconel alloy 625 bars were enhanced by the ultra-precision magnetic abrasive finishing technique with input parameters of workpiece rotational speed, work-piece feed rate, and magnetic abrasive grain size. After characterization with energy dispersive X-ray analysis (EDX), atomic force microscope (AFM), and a thermal imaging camera, we found that this ultra-precision magnetic polishing technology can improve surface roughness Ry of Inconel alloy 625 cylindrical bars from 2010 nm to 200 nm at a rotational speed of 12000 rpm, feed rate of 2000 mm/min, diamond abrasive grain size of 1 mu m, and flux density of 300 mT processing of 5 min.
引用
收藏
页码:2851 / 2859
页数:9
相关论文
共 27 条
[1]   Precipitates in Additively Manufactured Inconel 625 Superalloy [J].
Dubiel, Beata ;
Sieniawski, Jan .
MATERIALS, 2019, 12 (07)
[2]  
Ghosh G., 2018, J. Micromanufacturing, V1, P170, DOI [10.1177/2516598418777315, DOI 10.1177/2516598418777315]
[3]   Additive Manufacturing Processes: Selective Laser Melting, Electron Beam Melting and Binder JettingSelection Guidelines [J].
Gokuldoss, Prashanth Konda ;
Kolla, Sri ;
Eckert, Juergen .
MATERIALS, 2017, 10 (06)
[4]  
Goyal Ashish, 2018, IOP Conference Series: Materials Science and Engineering, V377, DOI 10.1088/1757-899X/377/1/012109
[5]   Selective laser melting (SLM) of AISI 316L-impact of laser power, layer thickness, and hatch spacing on roughness, density, and microhardness at constant input energy density [J].
Greco, Sebastian ;
Gutzeit, Kevin ;
Hotz, Hendrik ;
Kirsch, Benjamin ;
Aurich, Jan C. .
INTERNATIONAL JOURNAL OF ADVANCED MANUFACTURING TECHNOLOGY, 2020, 108 (5-6) :1551-1562
[6]  
Gunen A, 2017, MATERIA-BRAZIL, V22, DOI [10.1590/S1517-707620170002.0161, 10.1590/s1517-707620170002.0161]
[7]   Novel rotating-vibrating magnetic abrasive polishing method for double layered internal surface finishing [J].
Guo, Jiang ;
Au, Ka Hing ;
Sun, Chen-Nan ;
Goh, Min Hao ;
Kum, Chun Wai ;
Liu, Kui ;
Wei, Jun ;
Suzuki, Hirofumi ;
Kang, Renke .
JOURNAL OF MATERIALS PROCESSING TECHNOLOGY, 2019, 264 :422-437
[8]  
Heng L., 2017, High Speed Machining, V3, P42, DOI DOI 10.1515/HSM-2017-0004
[9]   Performance of PVD TiN, TiCN, and TiAlN coated cemented carbide tools in turning [J].
Jindal, PC ;
Santhanam, AT ;
Schleinkofer, U ;
Shuster, AF .
INTERNATIONAL JOURNAL OF REFRACTORY METALS & HARD MATERIALS, 1999, 17 (1-3) :163-170
[10]   Optimization of Machining Parameter in Turning Inconel 625 [J].
Kosaraju, Satyanarayana ;
Kumar, Vijay M. ;
Sateesh, N. .
MATERIALS TODAY-PROCEEDINGS, 2018, 5 (02) :5343-5348