Proof of a conjecture of Fiedler and Markham

被引:20
作者
Yong, XR [1 ]
机构
[1] Xinjiang Univ, Dept Math, Urumqi 830046, Peoples R China
关键词
M-matrix; eigenvalues; Hadamard product; stochastic matrix;
D O I
10.1016/S0024-3795(00)00211-1
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let A be an n x n nonsingular M-matrix. For the Hadamard product A circle A(-1), M. Fiedler and T.L. Markham conjectured in [Linear Algebra Appl. 101 (1988) 1] that q(A circle A(-1)) greater than or equal to 2/n, where q(A circle A(-1)) is the smallest eigenvalue (in modulus) of A circle A(-1). We considered this conjecture in [Linear Algebra Appl. 288 (1999) 259] having observed an incorrect proof in [Linear Algebra Appl. 144 (1991) 171] and obtained that q(A circle A(-1)) greater than or equal to (2/n)(n - 1)/n. The present paper gives a proof for this conjecture, (C) 2000 Elsevier Science Inc. All rights reserved.
引用
收藏
页码:167 / 171
页数:5
相关论文
共 7 条
[1]  
[Anonymous], 1979, NONNEGATIVE MATRICES
[2]  
FIEDLER M, 1988, LINEAR ALGEBRA APPL, V101, P1
[3]  
Horn R.A., 1991, TOPICS MATRIX ANAL
[4]  
Johnson CR., 1977, LINEAR MULTILINEAR A, V4, P261, DOI [10.1080/03081087708817160, DOI 10.1080/03081087708817160]
[5]  
LI C, 1991, LINEAR ALGEBRA APPL, V144, P171
[6]   On a conjecture of Fiedler and Markham [J].
Yong, XR ;
Wang, Z .
LINEAR ALGEBRA AND ITS APPLICATIONS, 1999, 288 (1-3) :259-267
[7]  
YONG XR, 1996, P CHIN 2 ANN M LIN A