Variable-order fractional master equation and clustering of particles: non-uniform lysosome distribution

被引:5
作者
Fedotov, Sergei [1 ]
Han, Daniel [1 ,2 ]
Zubarev, Andrey Yu [3 ]
Johnston, Mark [2 ]
Allan, Victoria J. [2 ]
机构
[1] Univ Manchester, Dept Math, Sch Biol Sci, Manchester M13 9PL, England
[2] Univ Manchester, Sch Biol Sci, Fac Biol Med & Hlth, Manchester M13 9PL, England
[3] Ural Fed Univ, Ekaterinburg 620083, Russia
来源
PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES | 2021年 / 379卷 / 2205期
基金
英国工程与自然科学研究理事会; 俄罗斯科学基金会; 英国惠康基金;
关键词
intracellular transport; fractional equations; subdiffusion; ANOMALOUS DIFFUSION; RANDOM-WALKS; TRANSPORT; SUBDIFFUSION; CELLS;
D O I
10.1098/rsta.2020.0317
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
In this paper, we formulate the space-dependent variable-order fractional master equation to model clustering of particles, organelles, inside living cells. We find its solution in the long-time limit describing non-uniform distribution due to a space-dependent fractional exponent. In the continuous space limit, the solution of this fractional master equation is found to be exactly the same as the space-dependent variable-order fractional diffusion equation. In addition, we show that the clustering of lysosomes, an essential organelle for healthy functioning of mammalian cells, exhibit space-dependent fractional exponents. Furthermore, we demonstrate that the non-uniform distribution of lysosomes in living cells is accurately described by the asymptotic solution of the space-dependent variable-order fractional master equation. Finally, Monte Carlo simulations of the fractional master equation validate our analytical solution. This article is part of the theme issue 'Transport phenomena in complex systems (part 1)'.
引用
收藏
页数:10
相关论文
共 37 条
[1]  
Alberts B, 2018, GARLAND SCI
[2]   A Mathematical Model for the Proliferation, Accumulation and Spread of Pathogenic Proteins Along Neuronal Pathways with Locally Anomalous Trapping [J].
Angstmann, C. N. ;
Donnelly, I. C. ;
Henry, B. I. ;
Langlands, T. A. M. .
MATHEMATICAL MODELLING OF NATURAL PHENOMENA, 2016, 11 (03) :142-156
[3]   Whole-Cell Scale Dynamic Organization of Lysosomes Revealed by Spatial Statistical Analysis [J].
Ba, Qinle ;
Raghavan, Guruprasad ;
Kiselyov, Kirill ;
Yang, Ge .
CELL REPORTS, 2018, 23 (12) :3591-3606
[4]   Spatial distributions at equilibrium under heterogeneous transient subdiffusion [J].
Berry, Hugues ;
Soula, Hedi A. .
FRONTIERS IN PHYSIOLOGY, 2014, 5
[5]   Single particle tracking in systems showing anomalous diffusion: the role of weak ergodicity breaking [J].
Burov, Stas ;
Jeon, Jae-Hyung ;
Metzler, Ralf ;
Barkai, Eli .
PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2011, 13 (05) :1800-1812
[6]   Nonergodic subdiffusion from transient interactions with heterogeneous partners [J].
Charalambous, C. ;
Munoz-Gil, G. ;
Celi, A. ;
Garcia-Parajo, M. F. ;
Lewenstein, M. ;
Manzo, C. ;
Garcia-March, M. A. .
PHYSICAL REVIEW E, 2017, 95 (03)
[7]   Fractional diffusion in inhomogeneous media [J].
Chechkin, AV ;
Gorenflo, R ;
Sokolov, IM .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2005, 38 (42) :L679-L684
[8]  
Chen KJ, 2015, NAT MATER, V14, P589, DOI [10.1038/NMAT4239, 10.1038/nmat4239]
[9]   Non-homogeneous Random Walks, Subdiffusive Migration of Cells and Anomalous Chemotaxis [J].
Fedotov, S. ;
Ivanov, A. O. ;
Zubarev, A. Y. .
MATHEMATICAL MODELLING OF NATURAL PHENOMENA, 2013, 8 (02) :28-43
[10]   Asymptotic Behavior of the Solution of the Space Dependent Variable Order Fractional Diffusion Equation: Ultraslow Anomalous Aggregation [J].
Fedotov, Sergei ;
Han, Daniel .
PHYSICAL REVIEW LETTERS, 2019, 123 (05)