Cuspidal representations of sl(n+1)

被引:24
作者
Grantcharov, Dimitar [2 ]
Serganova, Vera [1 ]
机构
[1] Univ Calif Berkeley, Dept Math, Berkeley, CA 94720 USA
[2] Univ Texas Arlington, Dept Math, Arlington, TX 76019 USA
关键词
Lie algebra; Indecomposable representations; Quiver; Weight modules; LIE-ALGEBRAS; MODULES; CLASSIFICATION; FINITE; PRODUCTS;
D O I
10.1016/j.aim.2009.12.024
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we study the subcategory of cuspidal modules of the category of weight modules over the Lie algebra sl(n+1). Our main result is a complete classification and an explicit description of indecomposable cuspidal modules. (C) 2010 Elsevier Inc. All rights reserved.
引用
收藏
页码:1517 / 1547
页数:31
相关论文
共 23 条
[1]   Koszul duality patterns in representation theory [J].
Beilinson, A ;
Ginzburg, V ;
Soergel, W .
JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY, 1996, 9 (02) :473-527
[2]   Modules with bounded weight multiplicities for simple Lie algebras [J].
Benkart, G ;
Britten, D ;
Lemire, F .
MATHEMATISCHE ZEITSCHRIFT, 1997, 225 (02) :333-353
[3]  
BERNSTEIN JN, 1980, COMPOS MATH, V41, P245
[4]   Complete reducibility of torsion free Cn-modules of finite degree [J].
Britten, D ;
Khomenko, O ;
Lemire, F ;
Mazorchuk, V .
JOURNAL OF ALGEBRA, 2004, 276 (01) :129-142
[5]   Tenser product realizations of simple torsion free modules [J].
Britten, DJ ;
Lemire, FW .
CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 2001, 53 (02) :225-243
[6]   A CLASSIFICATION OF SIMPLE LIE MODULES HAVING A 1-DIMENSIONAL WEIGHT SPACE [J].
BRITTEN, DJ ;
LEMIRE, FW .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1987, 299 (02) :683-697
[7]  
DIXMIER J, 1974, ALGEBRES ENVELOPPANT
[8]  
Drozd Yu.A., 1983, Visnik Kiev. Univ. Ser. Mat. Mekh, P70
[10]  
Fuks D. B., 1986, CONT SOVIET MATH