High-dimensional Edgeworth expansion of a test statistic on independence and its error bound

被引:8
作者
Akita, Tomoyuki [1 ]
Jin, Jinghua [2 ]
Wakaki, Hirofumi [1 ]
机构
[1] Hiroshima Univ, Dept Math, Hiroshima 730, Japan
[2] Daiichi Giken Co Ltd, Daiichi, Japan
关键词
Edgeworth expansion; Error bound; High dimension; Likelihood ratio;
D O I
10.1016/j.jmva.2010.03.014
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In this paper, we calculate Edgeworth expansion of a test statistic on independence when some of the parameters are large, and simulate the goodness of fit of its approximation. We also calculate an error bound for Edgeworth expansion. Some tables of the error bound are given, which show that the derived bound is sufficiently small for practical use. (C) 2010 Elsevier Inc. All rights reserved.
引用
收藏
页码:1806 / 1813
页数:8
相关论文
共 10 条
[1]  
Anderson T. W., 1984, An introduction to multivariate statistical analysis, V2nd
[2]   A GENERAL DISTRIBUTION THEORY FOR A CLASS OF LIKELIHOOD CRITERIA [J].
BOX, GEP .
BIOMETRIKA, 1949, 36 (3-4) :317-346
[3]   Error bounds for asymptotic approximations of the linear discriminant function when the sample sizes and dimensionality are large [J].
Fujikoshi, Y .
JOURNAL OF MULTIVARIATE ANALYSIS, 2000, 73 (01) :1-17
[4]   An asymptotic expansion for the distribution of Hotelling's T-2-statistic under nonnormality [J].
Fujikoshi, Y .
JOURNAL OF MULTIVARIATE ANALYSIS, 1997, 61 (02) :187-193
[5]  
FUJIKOSHI Y, 2003, 0302 TR HIR U STAT R
[6]  
FUJIKOSHI Y, 2002, 0201 TR HIR U STAT R
[7]  
KANO Y, 1995, AM J MATH MANAGEMENT, V15, P317
[8]  
Muirhead R. J., 1982, Aspects of multivariate statistical theory
[9]  
Siotani M., 1985, Modern Multivariate Statistical Analysis: A Graduate Course and Handbook
[10]  
WAKAKI H, 2007, 0703 TR HIR U STAT R