Imitation learning of dual-arm manipulation tasks in humanoid robots

被引:49
作者
Asfour, Tamim [1 ]
Gyarfas, Florian [1 ]
Azad, Pedram [1 ]
Dillmann, Rudiger [1 ]
机构
[1] Univ Karlsruhe, Inst Comp Sci & Engn, CSE IAIM, POB 6980, D-76128 Karlsruhe, Germany
来源
2006 6TH IEEE-RAS INTERNATIONAL CONFERENCE ON HUMANOID ROBOTS, VOLS 1 AND 2 | 2006年
关键词
D O I
10.1109/ICHR.2006.321361
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper, we deal with imitation learning of arm movements in humanoid robots. Hidden Markov Models (HMM) are used to generalize movements demonstrated to a robot multiple times. They are trained with the characteristic features (key points) of each demonstration. Using the same HMM, key points that are common to all demonstrations are identified; only those are considered when reproducing a movement. We also show how HMM can be used to detect temporal dependencies between both arms in dual-arm tasks. We created a model of the human upper body to simulate the reproduction of dual-arm movements and generate natural-looking joint configurations from tracked hand paths. Results are presented and discussed.
引用
收藏
页码:40 / +
页数:2
相关论文
共 20 条
[1]  
[Anonymous], 1997, GENTLE TUTORIAL EM A
[2]  
[Anonymous], P IEEE INT C ROB AUT
[3]  
ASFOUR T, 2003, IEEE RSJ INT C INT R
[4]  
ASFOUR T, 2003, THESIS U KARLSRUHE K
[5]  
ATKESON CG, 1997, MACH LEARN, P1040
[6]  
AZAD P, 2004, INT C HUM ROB HUM SA
[7]  
AZAD P, 2006, INT WORKSH VIS BAS H
[8]   Discovering optimal imitation strategies [J].
Billard, A ;
Epars, Y ;
Calinon, S ;
Schaal, S ;
Cheng, G .
ROBOTICS AND AUTONOMOUS SYSTEMS, 2004, 47 (2-3) :69-77
[9]  
BILLARD A, 2004, ROBOTICS AUTONOMOUS, V47, P2
[10]  
CALINON S, 2005, P IEEE INT C ROB AUT, P2769