Robust Geographically Weighted Regression with Least Absolute Deviation Method in Case of Poverty in Java']Java Island

被引:1
作者
Afifaha, Rawyanil [1 ]
Andriyana, Yudhie [1 ]
Jaya, I. G. N. Mindra [1 ]
机构
[1] Univ Padjajaran, Dept Stat, Bandung 40132, Indonesia
来源
STATISTICS AND ITS APPLICATIONS | 2017年 / 1827卷
关键词
D O I
10.1063/1.4979439
中图分类号
O59 [应用物理学];
学科分类号
摘要
Geographically Weighted Regression (GWR) is a development of an Ordinary Least Squares (OLS) regression which is quite effective in estimating spatial non-stationary data. On the GWR models, regression parameters are generated locally, each observation has a unique regression coefficient. Parameter estimation process in GWR uses Weighted Least Squares (WLS). But when there are outliers in the data, the parameter estimation process with WLS produces estimators which are not efficient. Hence, this study uses a robust method called Least Absolute Deviation (LAD), to estimate the parameters of GWR model in the case of poverty in Java Island. This study concludes that GWR model with LAD method has a better performance.
引用
收藏
页数:9
相关论文
共 15 条
  • [1] Agusti R., 2015, THESIS
  • [2] Allen R. G., 1998, FAO Irrigation and Drainage Paper
  • [3] Anselin L., 2005, EXPLORING SPATIAL DA, DOI [10.1080/03461238.1963.10410606, DOI 10.1111/J.1435-5957.2010.00279.X/FULL]
  • [4] Badan Pusat Statistik, 2015, DAT INF KEM KAB KOT
  • [5] Birkes D., 1993, Alternative Methods of Regression
  • [6] Chatterjee S., 2006, Regression Analysis by Example, V4th
  • [7] Djuraidah A., JURNAL STATISTIKA, V12, P1
  • [8] AN INTRODUCTION TO L1-NORM BASED STATISTICAL-DATA ANALYSIS
    DODGE, Y
    [J]. COMPUTATIONAL STATISTICS & DATA ANALYSIS, 1987, 5 (04) : 239 - 253
  • [9] Fotheringham A. S., 2002, Geographically weighted regression: The analysis of spatially varying relationships
  • [10] Prihantari D. S., 2013, THESIS