Identities from the binomial transform

被引:20
作者
Chen, Kwang-Wu [1 ]
机构
[1] Taipei Municipal Univ Educ, Dept Math & Comp Sci Educ, Taipei 100, Taiwan
关键词
generalized seidel matrix; binomial transform; Bernoulli numbers;
D O I
10.1016/j.jnt.2006.07.015
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A sequence b(n) is the binomial transform of the sequence an if b(n) = Sigma(n)(k)=0 ((n)(k))a(k). We derive a general identity for such pairs of sequences. Various known identities are obtained as particular cases. (C) 2006 Elsevier Inc. All rights reserved.
引用
收藏
页码:142 / 150
页数:9
相关论文
共 14 条
[1]  
Abramowitz M., 1972, HDB MATH FUNCTIONS F
[2]  
[Anonymous], SEM LOTHAR COMBIN
[3]  
[Anonymous], FIBONACCI Q
[4]   A summation on Bernoulli numbers [J].
Chen, KW .
JOURNAL OF NUMBER THEORY, 2005, 111 (02) :372-391
[5]  
CHEN KW, 2005, ARS COMBIN, V77
[6]   FURTHER TRIANGLES OF SEIDEL-ARNOLD TYPE AND CONTINUED FRACTIONS RELATED TO EULER AND SPRINGER NUMBERS [J].
DUMONT, D .
ADVANCES IN APPLIED MATHEMATICS, 1995, 16 (03) :275-296
[7]  
Dumont D., 1994, AEQUATIONES MATH, V47, P31, DOI 10.1007/BF01838137
[8]   Applications of the classical umbral calculus [J].
Gessel, IM .
ALGEBRA UNIVERSALIS, 2003, 49 (04) :397-434
[9]  
Graham R. L., 1994, Concrete Mathematics
[10]   A RECURRENCE FORMULA FOR THE BERNOULLI NUMBERS [J].
KANEKO, M .
PROCEEDINGS OF THE JAPAN ACADEMY SERIES A-MATHEMATICAL SCIENCES, 1995, 71 (08) :192-193