Model identification in computational stochastic dynamics using experimental modal data

被引:23
作者
Batou, A. [1 ]
Soize, C. [1 ]
Audebert, S. [2 ]
机构
[1] Univ Paris Est, Lab Modelisat & Simulat Multi Echelle, CNRS, MSME,UMR 8208, F-77454 Marne La Vallee, France
[2] Elect France Lab, Acoust & Mech Anal Dept, F-92141 Clamart, France
关键词
Structural dynamics; Model identification; Computational stochastic dynamics; Mode crossing; Experimental modal analysis; STRUCTURAL DYNAMICS; UNCERTAINTIES; FREQUENCY; STIFFNESS; MATRICES;
D O I
10.1016/j.ymssp.2014.05.010
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
This paper deals with the identification of a stochastic computational model using experimental eigenfrequencies and mode shapes. In the presence of randomness, it is difficult to construct a one-to-one correspondence between the results provided by the stochastic computational model and the experimental data because of the random modes crossing and veering phenomena that may occur from one realization to another one. In this paper, this correspondence is constructed by introducing an adapted transformation for the computed modal quantities. Then the transformed computed modal quantities can be compared with the experimental data in order to identify the parameters of the stochastic computational model. The methodology is applied to a booster pump of thermal units for which experimental modal data have been measured on several sites. (C) 2014 Elsevier Ltd. All rights reserved.
引用
收藏
页码:307 / 322
页数:16
相关论文
共 51 条
  • [1] AN ONLINE METHOD FOR INTERPOLATING LINEAR PARAMETRIC REDUCED-ORDER MODELS
    Amsallem, David
    Farhat, Charbel
    [J]. SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2011, 33 (05) : 2169 - 2198
  • [2] [Anonymous], 1997, Identification of parametric models from experimental data
  • [3] Stochastic Modeling of Structural Uncertainty/Variability from Ground Vibration Modal Test Data
    Avalos, Javier
    Swenson, Eric D.
    Mignolet, Marc P.
    Lindsley, Ned J.
    [J]. JOURNAL OF AIRCRAFT, 2012, 49 (03): : 870 - 884
  • [4] OPTIMIZATION PROCEDURE TO CORRECT STIFFNESS AND FLEXIBILITY MATRICES USING VIBRATION TESTS
    BARUCH, M
    [J]. AIAA JOURNAL, 1978, 16 (11) : 1208 - 1210
  • [5] Experimental identification of an uncertain computational dynamical model representing a family of structures
    Batou, A.
    Soize, C.
    Corus, M.
    [J]. COMPUTERS & STRUCTURES, 2011, 89 (13-14) : 1440 - 1448
  • [6] SELECTIVE SENSITIVITY IN THE FREQUENCY-DOMAIN .1. THEORY
    BENHAIM, Y
    PRELLS, U
    [J]. MECHANICAL SYSTEMS AND SIGNAL PROCESSING, 1993, 7 (05) : 461 - 475
  • [7] Berge J.M.F.T., 1984, PSYCHOMETRIKA, V49, P49
  • [8] THE PROCRUSTES PROBLEM FOR ORTHOGONAL STIEFEL MATRICES
    Bojanczyk, A. W.
    Lutoborski, A.
    [J]. SIAM JOURNAL ON SCIENTIFIC COMPUTING, 1999, 21 (04) : 1291 - 1304
  • [9] BOLLINGER AT, 1994, P SOC PHOTO-OPT INS, V2251, P882
  • [10] A local correspondence principle for mode shapes in structural dynamics
    Brincker, Rune
    Skafte, Anders
    Lopez-Aenlle, Manuel
    Sestieri, Aldo
    D'Ambrogio, Walter
    Canteli, Alfonso
    [J]. MECHANICAL SYSTEMS AND SIGNAL PROCESSING, 2014, 45 (01) : 91 - 104