Development and Testing of Polyurethane based Composites using Rapid Prototyping Techniques for Biomedical Applications-A Review

被引:1
作者
Banoriya, Deepen [1 ]
Purohit, Rajesh [1 ]
Dwivedi, R. K. [1 ]
Baghel, Umesh [1 ]
机构
[1] Maulana Azad Natl Inst Technol, Dept Mech Engn, Bhopal, MP, India
关键词
Rapidprototyping (RP); Fused deposition modelling (FDM); Polyurethane(PU); Titanium; Bio-compatible composite; TITANIUM-DIOXIDE; NANOCOMPOSITE;
D O I
10.1016/j.matpr.2019.07.569
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The fused deposition modeling (FDM) can be used to develop physical model from three dimensional CAD models. Basically FDM uses a thermoplastic filament, which is heated to its melting point and after that extruded, layer by layer to create a three dimensional object [1]. However this technique is still in front of some problems for its application in bio-compatible polymer based composite due to lack of information. The present paper reviews the use of FDM process for development of biocompatible composites. The present paper focuses on the application of Polyurethane-Titanium Composite as bio compatible material. The addition of titanium significantly increases the mechanical properties similar to high strength to weight ratio, durability, fatigue strength, hardness, corrosion and wear resistance of the composite. Therefore the Polyurethane-Titanium Composite can be usefully for medical applications. (C) 2019 Published by Elsevier Ltd.
引用
收藏
页码:5410 / 5415
页数:6
相关论文
共 18 条
[1]  
Abdal-hay A., 2018, EUROPEAN POLYM, V14, P5682
[2]   Corrosion and surface modification on biocompatible metals: A review [J].
Asri, R. I. M. ;
Harun, W. S. W. ;
Samykano, M. ;
Lah, N. A. C. ;
Ghani, S. A. C. ;
Tarlochan, F. ;
Raza, M. R. .
MATERIALS SCIENCE & ENGINEERING C-MATERIALS FOR BIOLOGICAL APPLICATIONS, 2017, 77 :1261-1274
[3]  
Banoriya D, 2017, MATER TODAY-PROC, V4, P3534, DOI 10.1016/j.matpr.2017.02.244
[4]   Modern Trends in Rapid Prototyping for Biomedical Applications [J].
Banoriya, Deepen ;
Purohit, Rajesh ;
Dwivedi, R. K. .
MATERIALS TODAY-PROCEEDINGS, 2015, 2 (4-5) :3409-3418
[5]  
Barick AK, 2017, POLYURETHANE POLYMERS: COMPOSITES AND NANOCOMPOSITES, P21, DOI 10.1016/B978-0-12-804065-2.00002-4
[6]   Effect of structural disparity of graphene-based materials on thermo-mechanical and surface properties of thermoplastic polyurethane nanocomposites [J].
Bera, Madhab ;
Maji, Pradip K. .
POLYMER, 2017, 119 :118-133
[7]   3D Printing of Porous Scaffolds with Controlled Porosity and Pore Size Values [J].
Buj-Corral, Irene ;
Bagheri, Ali ;
Petit-Rojo, Oriol .
MATERIALS, 2018, 11 (09)
[8]   Residual stress measurement in Fused Deposition Modelling parts [J].
Casavola, Caterina ;
Cazzato, Alberto ;
Moramarco, Vincenzo ;
Pappalettera, Giovanni .
POLYMER TESTING, 2017, 58 :249-255
[9]   Optimizing process parameters of fused deposition modeling by Taguchi method for the fabrication of lattice structures [J].
Dong, Guoying ;
Wijaya, Grace ;
Tang, Yunlong ;
Zhao, Yaoyao Fiona .
ADDITIVE MANUFACTURING, 2018, 19 :62-72
[10]   Novel non-cytotoxic, bioactive and biodegradable hybrid materials based on polyurethanes/TiO2 for biomedical applications [J].
Gonzalez-Garcia, Dulce M. ;
Tellez Jurado, L. ;
Jimenez-Gallegos, R. ;
Rodriguez-Lorenzo, Luis M. .
MATERIALS SCIENCE AND ENGINEERING C-MATERIALS FOR BIOLOGICAL APPLICATIONS, 2017, 75 :375-384