Multi-Image Super Resolution in Multi-Contrast MRI

被引:0
|
作者
Yurt, Mahmut [1 ,2 ]
Cukur, Tolga [1 ,2 ,3 ]
机构
[1] Bilkent Univ, Elekt & Elekt Muhendisligi Bolumu, Ankara, Turkey
[2] Bilkent Univ, Ulusal Manyetik Rezonans Arastirma Merkezi, Ankara, Turkey
[3] Bilkent Univ, Muhendislik & Fen Bilimleri Enstitusu, Sinirbilim Program, Ankara, Turkey
来源
2020 28TH SIGNAL PROCESSING AND COMMUNICATIONS APPLICATIONS CONFERENCE (SIU) | 2020年
关键词
super resolution; deblurring; multi-contrast MRI;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Acquisition of high-resolution magnetic resonance images (MRI) under distinct contrasts can enhance diagnostic information required in clinical diagnosis. Yet, acquiring high-resolution images might be impractical due to increased noise, prolonged scan durations and hardware costs. In such situations, an alternative solution can be the synthesis of high-resolution images from low-resolution images. Common methods perform super resolution of a single image. However, in multi-contrast MRI, the images of a single contrast might not contain sufficient prior information required for a successful deblurring. To enhance the required prior information, complementary prior information available in other contrasts can be used. Here, a multi-contrast MRI super resolution method is proposed to simultaneously deblur the images of multiple distinct contrasts. The proposed method relies on generative adversarial networks that can produce as realistic images as possible by better recovering high-frequency details. Qualitative and quantitative evaluations on a multi-contrast MRI dataset demonstrated that the proposed method outperforms the alternative single image MRI super resolution method.
引用
收藏
页数:4
相关论文
共 50 条
  • [21] Model-Guided Multi-Contrast Deep Unfolding Network for MRI Super-resolution Reconstruction
    Yang, Gang
    Zhang, Li
    Zhou, Man
    Liu, Aiping
    Chen, Xun
    Xiong, Zhiwei
    Wu, Feng
    PROCEEDINGS OF THE 30TH ACM INTERNATIONAL CONFERENCE ON MULTIMEDIA, MM 2022, 2022, : 3974 - 3982
  • [22] WavTrans: Synergizing Wavelet and Cross-Attention Transformer for Multi-contrast MRI Super-Resolution
    Li, Guangyuan
    Lyu, Jun
    Wang, Chengyan
    Dou, Qi
    Qin, Jing
    MEDICAL IMAGE COMPUTING AND COMPUTER ASSISTED INTERVENTION, MICCAI 2022, PT VI, 2022, 13436 : 463 - 473
  • [23] MAPANet: A Multi-Scale Attention-Guided Progressive Aggregation Network for Multi-Contrast MRI Super-Resolution
    Liu, Licheng
    Liu, Tao
    Zhou, Wei
    Wang, Yaonan
    Liu, Min
    IEEE TRANSACTIONS ON COMPUTATIONAL IMAGING, 2024, 10 : 928 - 940
  • [24] Fast multi-contrast MRI reconstruction
    Huang, Junzhou
    Chen, Chen
    Axel, Leon
    MAGNETIC RESONANCE IMAGING, 2014, 32 (10) : 1344 - 1352
  • [25] Fast Multi-contrast MRI Reconstruction
    Huang, Junzhou
    Chen, Chen
    Axel, Leon
    MEDICAL IMAGE COMPUTING AND COMPUTER-ASSISTED INTERVENTION - MICCAI 2012, PT I, 2012, 7510 : 281 - 288
  • [26] Multi-contrast brain magnetic resonance image super-resolution using the local weight similarity
    Hong Zheng
    Xiaobo Qu
    Zhengjian Bai
    Yunsong Liu
    Di Guo
    Jiyang Dong
    Xi Peng
    Zhong Chen
    BMC Medical Imaging, 17
  • [27] Multi-contrast brain magnetic resonance image super-resolution using the local weight similarity
    Zheng, Hong
    Qu, Xiaobo
    Bai, Zhengjian
    Liu, Yunsong
    Guo, Di
    Dong, Jiyang
    Peng, Xi
    Chen, Zhong
    BMC MEDICAL IMAGING, 2017, 17
  • [28] Image Synthesis in Multi-Contrast MRI With Conditional Generative Adversarial Networks
    Dar, Salman U. H.
    Yurt, Mahmut
    Karacan, Levent
    Erdem, Aykut
    Erdem, Erkut
    Cukur, Tolga
    IEEE TRANSACTIONS ON MEDICAL IMAGING, 2019, 38 (10) : 2375 - 2388
  • [29] A multi-image super-resolution algorithm applied to thermal imagery
    Mandanici, Emanuele
    Tavasci, Luca
    Corsini, Francesco
    Gandolfi, Stefano
    APPLIED GEOMATICS, 2019, 11 (03) : 215 - 228
  • [30] A graph neural network for heterogeneous multi-image super-resolution
    Tarasiewicz, Tomasz
    Kawulok, Michal
    PATTERN RECOGNITION LETTERS, 2025, 189 : 214 - 220