The two-component signaling pathway of bacterial chemotaxis: A molecular view of signal transduction by receptors, kinases, and adaptation enzymes

被引:414
作者
Falke, JJ [1 ]
Bass, RB [1 ]
Butler, SL [1 ]
Chervitz, SA [1 ]
Danielson, MA [1 ]
机构
[1] Univ Colorado, Dept Chem & Biochem, Boulder, CO 80309 USA
关键词
transmembrane signaling; kinase regulation; histidine kinase; aspartate kinase; protein methylation;
D O I
10.1146/annurev.cellbio.13.1.457
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
The chemosensory pathway of bacterial chemotaxis has become a paradigm for the two-component superfamily of receptor-regulated phosphorylation pathways. This simple pathway illustrates many of the fundamental principles and unanswered questions in the field of signaling biology. A molecular description of pathway function has progressed rapidly because it is accessible to diverse structural, biochemical, and genetic approaches. As a result, structures are emerging for most of the pathway elements, biochemical studies are elucidating the mechanisms of key signaling events, and genetic methods are revealing the intermolecular interactions that transmit information between components. Recent advances include (a) the first molecular picture of a conformational transmembrane signal in a cell surface receptor, (b) four new structures of kinase domains and adaptation enzymes, and (c) significant new insights into the mechanisms of receptor-mediated kinase regulation, receptor adaptation, and the phospho-activation of signaling proteins. Overall, the chemosensory pathway and the propulsion system it regulates provide an ideal system in which to probe molecular principles underlying complex cellular signaling and behavior.
引用
收藏
页码:457 / 512
页数:56
相关论文
共 207 条
[1]   Hyphal development in Neurospora crassa: Involvement of a two-component histidine kinase [J].
Alex, LA ;
Borkovich, KA ;
Simon, MI .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1996, 93 (08) :3416-3421
[2]   STRUCTURE-FUNCTION STUDIES OF BACTERIAL CHEMOSENSORS [J].
AMES, P ;
CHEN, J ;
WOLFF, C ;
PARKINSON, JS .
COLD SPRING HARBOR SYMPOSIA ON QUANTITATIVE BIOLOGY, 1988, 53 :59-65
[3]   Methylation segments are not required for chemotactic signalling by cytoplasmic fragments of Tsr, the methyl-accepting serine chemoreceptor of Escherichia coli [J].
Ames, P ;
Yu, YA ;
Parkinson, JS .
MOLECULAR MICROBIOLOGY, 1996, 19 (04) :737-746
[4]   CONSTITUTIVELY SIGNALING FRAGMENTS OF TSR, THE ESCHERICHIA-COLI SERINE CHEMORECEPTOR [J].
AMES, P ;
PARKINSON, JS .
JOURNAL OF BACTERIOLOGY, 1994, 176 (20) :6340-6348
[5]   Signal transduction via the multi-step phosphorelay: Not necessarily a road less traveled [J].
Appleby, JL ;
Parkinson, JS ;
Bourret, RB .
CELL, 1996, 86 (06) :845-848
[6]  
AQVIST J, 1995, J BIOL CHEM, V270, P9978
[7]   CORRELATION BETWEEN PHOSPHORYLATION OF THE CHEMOTAXIS PROTEIN-CHEY AND ITS ACTIVITY AT THE FLAGELLAR MOTOR [J].
BARAK, R ;
EISENBACH, M .
BIOCHEMISTRY, 1992, 31 (06) :1821-1826
[8]   FUMARATE OR A FUMARATE METABOLITE RESTORES SWITCHING ABILITY TO ROTATING FLAGELLA OF BACTERIAL ENVELOPES [J].
BARAK, R ;
EISENBACH, M .
JOURNAL OF BACTERIOLOGY, 1992, 174 (02) :643-645
[9]   TRANSMEMBRANE SIGNALING BY A HYBRID PROTEIN - COMMUNICATION FROM THE DOMAIN OF CHEMORECEPTOR TRG THAT RECOGNIZES SUGAR-BINDING PROTEINS TO THE KINASE/PHOSPHATASE DOMAIN OF OSMOSENSOR ENVZ [J].
BAUMGARTNER, JW ;
KIM, C ;
BRISSETTE, RE ;
INOUYE, M ;
PARK, C ;
HAZELBAUER, GL .
JOURNAL OF BACTERIOLOGY, 1994, 176 (04) :1157-1163
[10]   MAGNESIUM BINDING TO THE BACTERIAL CHEMOTAXIS PROTEIN CHEY RESULTS IN LARGE CONFORMATIONAL-CHANGES INVOLVING ITS FUNCTIONAL SURFACE [J].
BELLSOLELL, L ;
PRIETO, J ;
SERRANO, L ;
COLL, M .
JOURNAL OF MOLECULAR BIOLOGY, 1994, 238 (04) :489-495