Behind and beyond the MATLAB ODE suite

被引:95
作者
Ashino, R [1 ]
Nagase, M
Vaillancourt, R
机构
[1] Osaka Kyoiku Univ, Div Math Sci, Osaka 582, Japan
[2] Osaka Univ, Dept Math, Grad Sch Sci, Toyonaka, Osaka 560, Japan
[3] Univ Ottawa, Dept Math & Stat, Ottawa, ON K1N 6N5, Canada
关键词
stiff and nonstiff differential equations; implicit and explicit ODE solvers; Matlab odedemo;
D O I
10.1016/S0898-1221(00)00175-9
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The paper explains the concepts of order and absolute stability of numerical methods for solving systems of first-order ordinary differential equations (ODE) of the form y' = f(t, y), y(t(0)) = y(0), where f: R x R-n --> R-n, describes the phenomenon of problem stiffness, sind reviews explicit Runge-Kutta methods, and explicit and implicit linear multistep methods. It surveys the five numerical methods contained in the MATLAB ODE suite (three for nonstiff problems and two for stiff problems) to solve the above system, lists the available options, and uses the odedemo command to demonstrate the methods. One stiff ode code in MATLAB can solve more general equations of the form M(t)y' = f(t, y) provided the Mass option is on. (C) 2000 Elsevier Science Ltd. All rights reserved.
引用
收藏
页码:491 / 512
页数:22
相关论文
共 21 条
  • [1] Aiken R C., 1985, Stiff Computation
  • [2] ASHINO R, 1997, HAYAWAKARI MATLAB
  • [3] BUTCHER JC, 1987, NUMERICAL ANAL ORDIN, pCH
  • [4] Dormand J., 1980, J. Comput. Appl. Math., V6, P19, DOI DOI 10.1016/0771-050X(80)90013-3
  • [5] Enright W. H., 1975, BIT (Nordisk Tidskrift for Informationsbehandling), V15, P10, DOI 10.1007/BF01932994
  • [6] ENRIGHT WH, 1976, NUMERICAL METHODS DI, P45
  • [7] ON THE INSTABILITY OF THE BDF FORMULAS
    HAIRER, E
    WANNER, G
    [J]. SIAM JOURNAL ON NUMERICAL ANALYSIS, 1983, 20 (06) : 1206 - 1209
  • [8] HAIRER E, 1987, SOLVING ORDINARY D 3, V1
  • [9] HAIRER E, 1991, SOLVING ORDINARY DIF, V2, P5
  • [10] HINDMARSH AC, 1976, NUMERICAL METHODS DI, P147