Robust attitude tracking control of small-scale unmanned helicopter

被引:23
作者
Wang, Xiafu [1 ,2 ]
Chen, You [1 ]
Lu, Geng [1 ]
Zhong, Yisheng [1 ]
机构
[1] Tsinghua Univ, Dept Automat, TNList, Beijing 100084, Peoples R China
[2] High Tech Inst Xian, Xian, Peoples R China
基金
中国国家自然科学基金;
关键词
PID control; robust control; attitude control; unmanned helicopter; AUTONOMOUS HELICOPTER; INFINITY; SYSTEMS; DESIGN; UAV; UNCERTAINTIES; ATTENUATION; ROTORCRAFT;
D O I
10.1080/00207721.2013.822939
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Robust attitude control problem for small-scale unmanned helicopters is investigated to improve attitude control performances of roll and pitch channels under both small and large amplitude manoeuvre flight conditions. The model of the roll or pitch angular dynamics is regarded as a nominal single-input single-output linear system with equivalent disturbances which contain nonlinear uncertainties, coupling-effects, parameter perturbations, and external disturbances. Based on the signal compensation method, a robust controller is designed with two parts: a proportional-derivative controller and a robust compensator. The designed controller is linear and time-invariant, so it can be easily realised. The robust properties of the closed-loop system are proven. According to the ADS-33E-PRF military rotorcraft standard, the controller can achieve top control performances. Experimental results demonstrate the effectiveness of the proposed control strategy.
引用
收藏
页码:1472 / 1485
页数:14
相关论文
共 26 条
[1]   Robust Take-Off for a Quadrotor Vehicle [J].
Cabecinhas, D. ;
Naldi, R. ;
Marconi, L. ;
Silvestre, C. ;
Cunha, R. .
IEEE TRANSACTIONS ON ROBOTICS, 2012, 28 (03) :734-742
[2]  
Cai GW, 2011, ADV IND CONTROL, P1, DOI 10.1007/978-0-85729-635-1_1
[3]   Design and implementation of a robust and nonlinear flight control system for an unmanned helicopter [J].
Cai, Guowei ;
Chen, Ben M. ;
Dong, Xiangxu ;
Lee, Tong H. .
MECHATRONICS, 2011, 21 (05) :803-820
[4]   Neural Network Assisted Computationally Simple PIλDμ Control of a Quadrotor UAV [J].
Efe, Mehmet Onder .
IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, 2011, 7 (02) :354-361
[5]   Structured H∞ command and control-loop design for unmanned helicopters [J].
Gadewadikar, J. ;
Lewis, F. L. ;
Subbarao, Kamesh ;
Chen, Ben M. .
JOURNAL OF GUIDANCE CONTROL AND DYNAMICS, 2008, 31 (04) :1093-1102
[6]   H-Infinity Static Output-feedback Control for Rotorcraft [J].
Gadewadikar, Jyotirmay ;
Lewis, Frank L. ;
Subbarao, Kamesh ;
Peng, Kemao ;
Chen, Ben M. .
JOURNAL OF INTELLIGENT & ROBOTIC SYSTEMS, 2009, 54 (04) :629-646
[7]   Robust nonlinear motion control of a helicopter [J].
Isidori, A ;
Marconi, L ;
Serrani, A .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2003, 48 (03) :413-426
[8]   Adaptive trajectory control for autonomous helicopters [J].
Johnson, EN ;
Kannan, SK .
JOURNAL OF GUIDANCE CONTROL AND DYNAMICS, 2005, 28 (03) :524-538
[9]   Survey of Advances in Guidance, Navigation, and Control of Unmanned Rotorcraft Systems [J].
Kendoul, Farid .
JOURNAL OF FIELD ROBOTICS, 2012, 29 (02) :315-378
[10]   Robust Nonlinear Controls of Model-Scale Helicopters Under Lateral and Vertical Wind Gusts [J].
Leonard, Francois ;
Martini, Adnan ;
Abba, Gabriel .
IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, 2012, 20 (01) :154-163