Manifold anomalies in gene expression in a vineyard isolate of Saccharomyces cerevisiae revealed by DNA microarray analysis

被引:132
|
作者
Cavalieri, D
Townsend, JP
Hartl, DL
机构
[1] Harvard Univ, Dept Organism & Evolutionary Biol, Cambridge, MA 02138 USA
[2] Univ Florence, Dept Anim Genet & Genet, I-50125 Florence, Italy
关键词
D O I
10.1073/pnas.210395297
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Genome-wide transcriptional profiling has important applications in evolutionary biology for assaying the extent of heterozygosity for alleles showing quantitative variation in gene expression in natural populations. We have used DNA microarray analysis to study the global pattern of transcription in a homothallic strain of Saccharomyces cerevisiae isolated from wine grapes in a Tuscan vineyard, along with the diploid progeny obtained after sporulation. The parental strain shows 2:2 segregation (heterozygosity) for three unlinked loci. One determines resistance to trifluoroleucine; another, resistance to copper sulfate; and the third is associated with a morphological phenotype observed as colonies with a ridged surface resembling a filigree, Global expression analysis of the progeny with the filigreed and smooth colony phenotypes revealed a greater than 2-fold difference in transcription for 378 genes (6% of the genome). A large number of the overexpressed genes function in pathways of amino acid biosynthesis (particularly methionine) and sulfur or nitrogen assimilation, whereas many of the underexpressed genes are amino acid permeases, These wholesale changes in amino acid metabolism segregate as a suite of traits resulting from a single gene or a small number of genes. We conclude that natural vineyard populations of S, cerevisiae can harbor alleles that cause massive alterations in the global patterns of gene expression. Hence, studies of expression variation in natural populations, without accompanying segregation analysis, may give a false picture of the number of segregating genes underlying the variation.
引用
收藏
页码:12369 / 12374
页数:6
相关论文
共 50 条
  • [21] Genome-wide analysis of DNA turnover and gene expression in stationary-phase Saccharomyces cerevisiae
    de Morgan, A.
    Brodsky, L.
    Ronin, Y.
    Nevo, E.
    Korol, A.
    Kashi, Y.
    MICROBIOLOGY-SGM, 2010, 156 : 1758 - 1771
  • [22] Differential analysis of DNA microarray gene expression data
    Hatfield, GW
    Hung, SP
    Baldi, P
    MOLECULAR MICROBIOLOGY, 2003, 47 (04) : 871 - 877
  • [23] DNA microarray analysis of gene expression markers of endometriosis
    Eyster, KM
    Boles, AL
    Brannian, JD
    Hansen, KA
    FERTILITY AND STERILITY, 2002, 77 (01) : 38 - 42
  • [24] Molecular analysis of organic-solvent-tolerance in yeast Saccharomyces cerevisiae based on DNA microarray analysis
    Ozato, Naoki
    Matsui, Ken
    Kuroda, Kouichi
    Ueda, Mitsuyoshi
    JOURNAL OF BIOSCIENCE AND BIOENGINEERING, 2009, 108 : S54 - S55
  • [25] DNA microarray analysis on Saccharomyces cerevisiae under high carbon dioxide concentration in fermentation process
    Nagahisa K.
    Nakajima T.
    Yoshikawa K.
    Hirasawa T.
    Katakura Y.
    Furusawa C.
    Shioya S.
    Shimizu H.
    Biotechnology and Bioprocess Engineering, 2005, 10 (5) : 451 - 461
  • [26] DNA microarray analysis suggests that zinc pyrithione causes iron starvation to the yeast Saccharomyces cerevisiae
    Yasokawa, Daisuke
    Murata, Satomi
    Iwahashi, Yumiko
    Kitagawa, Emiko
    Kishi, Katsuyuki
    Okumura, Yukihiro
    Iwahashi, Hitoshi
    JOURNAL OF BIOSCIENCE AND BIOENGINEERING, 2010, 109 (05) : 479 - 486
  • [27] DNA microarray analysis on Saccharomyces cerevisiae under high carbon dioxide concentration in fermentation process
    Nagahisa, K
    Nakajima, T
    Yoshikawa, K
    Hirasawa, T
    Katakura, Y
    Furusawa, C
    Shioya, S
    Shimizu, H
    BIOTECHNOLOGY AND BIOPROCESS ENGINEERING, 2005, 10 (05) : 451 - 461
  • [28] Microfluidics device for single cell gene expression analysis in Saccharomyces cerevisiae
    Ryley, James
    Pereira-Smith, Olivia M.
    YEAST, 2006, 23 (14-15) : 1065 - 1073
  • [29] Global analysis of the regulatory network structure of gene expression in Saccharomyces cerevisiae
    Gunji, L
    Kai, T
    Takahashi, Y
    Maki, Y
    Kurihara, W
    Utsugi, T
    Fujimori, F
    Murakami, Y
    DNA RESEARCH, 2004, 11 (03) : 163 - 177
  • [30] The Evolution of Gene Expression QTL in Saccharomyces cerevisiae
    Ronald, James
    Akey, Joshua M.
    PLOS ONE, 2007, 2 (08):