Optimizing the Precision of Case Fatality Ratio Estimates Under the Surveillance Pyramid Approach

被引:9
作者
Pelat, Camille [1 ,2 ]
Ferguson, Neil M. [1 ,2 ]
White, Peter J. [1 ,2 ,3 ]
Reed, Carrie [4 ]
Finelli, Lyn [4 ]
Cauchemez, Simon [1 ,2 ,5 ]
Fraser, Christophe [1 ,2 ]
机构
[1] Univ London Imperial Coll Sci Technol & Med, MRC Ctr Outbreak Anal & Modelling, London, England
[2] Univ London Imperial Coll Sci Technol & Med, Natl Inst Hlth Res, Hlth Protect Res Unit Modelling Methodol, Dept Infect Dis Epidemiol,Sch Publ Hlth, London, England
[3] Publ Hlth England, Modelling & Econ Unit, London, England
[4] US Ctr Dis Control & Prevent, Influenza Div, Natl Ctr Immunizat & Resp Dis, Atlanta, GA USA
[5] Inst Pasteur, Math Modelling Infect Dis Unit, Paris, France
基金
英国医学研究理事会;
关键词
case fatality ratio; emerging infectious diseases; influenza; pandemics; statistical planning; surveillance protocol; 2009; INFLUENZA; SEVERITY; STRATEGIES; INFECTION; ENGLAND;
D O I
10.1093/aje/kwu213
中图分类号
R1 [预防医学、卫生学];
学科分类号
1004 ; 120402 ;
摘要
In the management of emerging infectious disease epidemics, precise and accurate estimation of severity indices, such as the probability of death after developing symptoms-the symptomatic case fatality ratio (sCFR)-is essential. Estimation of the sCFR may require merging data gathered through different surveillance systems and surveys. Since different surveillance strategies provide different levels of precision and accuracy, there is need for a theory to help investigators select the strategy that maximizes these properties. Here, we study the precision of sCFR estimators that combine data from several levels of the severity pyramid. We derive a formula for the standard error, which helps us find the estimator with the best precision given fixed resources. We further propose rules of thumb for guiding the choice of strategy: For example, should surveillance of a particular severity level be started? Which level should be preferred? We derive a formula for the optimal allocation of resources between chosen surveillance levels and provide a simple approximation that can be used in thinking more heuristically about planning surveillance. We illustrate these concepts with numerical examples corresponding to 3 influenza pandemic scenarios. Finally, we review the equally important issue of accuracy.
引用
收藏
页码:1036 / 1046
页数:11
相关论文
共 32 条
[1]   Assessment of different surveillance systems for avian influenza in commercial poultry in Catalonia (North-Eastern Spain) [J].
Alba, A. ;
Casal, J. ;
Napp, S. ;
Martin, P. A. J. .
PREVENTIVE VETERINARY MEDICINE, 2010, 97 (02) :107-118
[2]  
[Anonymous], 2009, Pandemic influenza preparedness and response
[3]  
Armitage P., 2002, STAT METHODS MED RES
[4]  
Atkinson AC, 1992, OPTIMUM EXPT DESIGNS, DOI [10.1007/978-3-642-04898-2_434, DOI 10.1007/978-3-642-04898-2_434]
[5]   Modelling food safety and economic consequences of surveillance and control strategies for Salmonella in pigs and pork [J].
Baptista, F. M. ;
Halasa, T. ;
Alban, L. ;
Nielsen, L. R. .
EPIDEMIOLOGY AND INFECTION, 2011, 139 (05) :754-764
[6]   Using an online survey of healthcare-seeking behaviour to estimate the magnitude and severity of the 2009 H1N1v influenza epidemic in England [J].
Brooks-Pollock, Ellen ;
Tilston, Natasha ;
Edmunds, W. John ;
Eames, Ken T. D. .
BMC INFECTIOUS DISEASES, 2011, 11
[7]   Empirical modelling of population sampling: lessons for designing sentinel surveillance [J].
Byass, P .
PUBLIC HEALTH, 2003, 117 (01) :36-42
[8]  
Collins SD, 1931, PUBLIC HLTH REP, V46
[9]   Evaluating Surveillance Strategies for the Early Detection of Low Pathogenicity Avian Influenza Infections [J].
Comin, Arianna ;
Stegeman, Arjan ;
Marangon, Stefano ;
Klinkenberg, Don .
PLOS ONE, 2012, 7 (04)
[10]   Mortality from pandemic A/H1N1 2009 influenza in England: public health surveillance study [J].
Donaldson, Liam J. ;
Rutter, Paul D. ;
Ellis, Benjamin M. ;
Greaves, Felix E. C. ;
Mytton, Oliver T. ;
Pebody, Richard G. ;
Yardley, Iain E. .
BMJ-BRITISH MEDICAL JOURNAL, 2009, 339 :82