On Infinitely generated Fuchsian groups of the Loch Ness monster, the Cantor tree and the Blooming Cantor tree

被引:2
作者
Arredondo, John A. [1 ]
Ramirez Maluendas, Camilo [2 ]
机构
[1] Fdn Univ Konrad Lorenz, Bogota 110231, Colombia
[2] Univ Nacl Colombia, Sede Manizales, Manizales, Colombia
关键词
Infinite Loch Ness Monster; Cantor tree; Blooming Cantor tree; Geometric Schottky groups; Non-compact surfaces;
D O I
10.1515/coma-2020-0004
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, for a non-compact Riemman surface S homeomorphic to either: the Infinite Loch Ness monster, the Cantor tree and the Blooming Cantor tree, we give a precise description of an infinite set of generators of a Fuchsian group Gamma < PSL(2, R), such that the quotient space H/Gamma is a hyperbolic Riemann surface homeomorphic to S. For each one of these constructions, we exhibit a hyperbolic polygon with an infinite number of sides and give a collection of Mobius transformations identifying the sides in pairs.
引用
收藏
页码:73 / 92
页数:20
相关论文
共 23 条
[1]   THE UNIFORMIZATION THEOREM [J].
ABIKOFF, W .
AMERICAN MATHEMATICAL MONTHLY, 1981, 88 (08) :574-592
[2]  
[Anonymous], 1992, Graduate Texts in Mathematics, DOI DOI 10.1007/978-1-4612-2034-3
[3]  
[Anonymous], 1970, General topology
[4]  
[Anonymous], 1984, London Mathematical Society Lecture Note Series, Series
[5]  
Beardon A., 1983, GEOMETRY DISCRETE GR
[6]   LEAVES WITH ISOLATED ENDS IN FOLIATED 3-MANIFOLDS [J].
CANTWELL, J ;
CONLON, L .
TOPOLOGY, 1977, 16 (04) :311-322
[7]  
de Saint-Gervais H. P, 2010, UNIFORMIZATION RIEMA
[8]  
Dugundji J., 1978, TOPOLOGY
[9]  
Ford LR., 1925, B AM MATH SOC, V31, P531, DOI DOI 10.1090/S0002-9904-1925-04104-X
[10]   On the terminations of topological spaces and groups. [J].
Freudenthal, H .
MATHEMATISCHE ZEITSCHRIFT, 1931, 33 :692-713