Advanced Composite 2D Energy Materials by Simultaneous Anodic and Cathodic Exfoliation

被引:53
作者
Li, Fengwang [1 ,2 ]
Xue, Mianqi [3 ,4 ]
Zhang, Xiaolong [1 ]
Chen, Lu [1 ]
Knowles, Gregory P. [1 ]
MacFarlane, Douglas R. [1 ,2 ]
Zhang, Jie [1 ,2 ]
机构
[1] Monash Univ, Sch Chem, Clayton, Vic 3800, Australia
[2] Monash Univ, ARC Ctr Excellence Electromat Sci, Sch Chem, Clayton, Vic 3800, Australia
[3] Chinese Acad Sci, Inst Phys, Beijing 100190, Peoples R China
[4] Chinese Acad Sci, Beijing Natl Lab Condensed Matter Phys, Beijing 100190, Peoples R China
基金
澳大利亚研究理事会;
关键词
2D materials; composite materials; electrochemical exfoliation; energy conversion; energy storage; ACTIVE EDGE SITES; ELECTROCHEMICAL EXFOLIATION; HYDROGEN EVOLUTION; GRAPHENE MATERIALS; MOS2; NANOSHEETS; GRAPHITE; SURFACE; NANOPARTICLES; DELAMINATION; ELECTRODES;
D O I
10.1002/aenm.201702794
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Composite materials based on graphene and other 2D materials are of considerable interest in the fields of catalysis, electronics, and energy conversion and storage because of the unique structural features and electronic properties of each component and the synergetic effects brought about by the compositing. Approaches to the mass production of 2D materials and their composites in a facile and affordable way are urgently needed to enable their implementation in practical applications. Here a novel electro-chemical exfoliation approach to prepare 2D composites is proposed, which combines simultaneous anodic exfoliation of graphite and cathodic exfoliation of other 2D materials (namely MoS2, MnO2, and graphitic carbon nitride). The synthesis is carried out in a single-compartment electrochemical cell to in situ produce functional 2D composite materials. Applications of the as-prepared 2D composites are demonstrated as (i) effective hydrogen evolution catalysts and (ii) supercapacitor electrode materials. The method enables the compositing of semiconductive, or even insulating, 2D materials with conductive graphene in an easy, cheap, ecofriendly, yet efficient way, liberating the intrinsic functions of 2D materials, which are usually hindered by their poor conductivity. The method is believed to be widely applicable to the family of 2D materials.
引用
收藏
页数:8
相关论文
共 48 条
[1]   How to get between the sheets: a review of recent works on the electrochemical exfoliation of graphene materials from bulk graphite [J].
Abdelkader, A. M. ;
Cooper, A. J. ;
Dryfe, R. A. W. ;
Kinloch, I. A. .
NANOSCALE, 2015, 7 (16) :6944-6956
[2]   Exfoliation of Layered Topological Insulators Bi2Se3 and Bi2Te3 via Electrochemistry [J].
Ambrosi, Adriano ;
Sofer, Zdenek ;
Luxa, Jan ;
Pumera, Martin .
ACS NANO, 2016, 10 (12) :11442-11448
[3]   2D metal carbides and nitrides (MXenes) for energy storage [J].
Anasori, Babak ;
Lukatskaya, Maria R. ;
Gogotsi, Yury .
NATURE REVIEWS MATERIALS, 2017, 2 (02)
[4]   Functional Composite Materials Based on Chemically Converted Graphene [J].
Bai, Hua ;
Li, Chun ;
Shi, Gaoquan .
ADVANCED MATERIALS, 2011, 23 (09) :1089-1115
[5]   Amorphous Molybdenum Sulfide Catalysts for Electrochemical Hydrogen Production: Insights into the Origin of their Catalytic Activity [J].
Benck, Jesse D. ;
Chen, Zhebo ;
Kuritzky, Leah Y. ;
Forman, Arnold J. ;
Jaramillo, Thomas F. .
ACS CATALYSIS, 2012, 2 (09) :1916-1923
[6]   Graphene, related two-dimensional crystals, and hybrid systems for energy conversion and storage [J].
Bonaccorso, Francesco ;
Colombo, Luigi ;
Yu, Guihua ;
Stoller, Meryl ;
Tozzini, Valentina ;
Ferrari, Andrea C. ;
Ruoff, Rodney S. ;
Pellegrini, Vittorio .
SCIENCE, 2015, 347 (6217)
[7]  
Chhowalla M, 2013, NAT CHEM, V5, P263, DOI [10.1038/NCHEM.1589, 10.1038/nchem.1589]
[8]   Electrochemistry of Nanostructured Layered Transition-Metal Dichalcogenides [J].
Chia, Xinyi ;
Eng, Alex Yong Sheng ;
Ambrosi, Adriano ;
Tan, Shu Min ;
Pumera, Martin .
CHEMICAL REVIEWS, 2015, 115 (21) :11941-11966
[9]  
Chung DeborahD. L., 2003, COMPOSITE MAT FUNCTI
[10]   Single stage electrochemical exfoliation method for the production of few-layer graphene via intercalation of tetraalkylammonium cations [J].
Cooper, Adam J. ;
Wilson, Neil R. ;
Kinloch, Ian A. ;
Dryfe, Robert A. W. .
CARBON, 2014, 66 :340-350