Building an Open Source Classifier for the Neonatal EEG Background: A Systematic Feature-Based Approach From Expert Scoring to Clinical Visualization

被引:21
作者
Moghadam, Saeed Montazeri [1 ,2 ,3 ]
Pinchefsky, Elana [4 ]
Tse, Ilse [1 ,2 ,3 ]
Marchi, Viviana [1 ,2 ,3 ,5 ]
Kohonen, Jukka [6 ]
Kauppila, Minna [1 ,2 ,3 ]
Airaksinen, Manu [1 ,2 ,3 ,7 ]
Tapani, Karoliina [1 ,2 ,3 ]
Nevalainen, Paivi [1 ,2 ,3 ]
Hahn, Cecil [8 ,9 ]
Tam, Emily W. Y. [8 ,9 ]
Stevenson, Nathan J. [10 ]
Vanhatalo, Sampsa [1 ,2 ,3 ,11 ]
机构
[1] Childrens Hosp, Pediat Res Ctr, Dept Clin Neurophysiol, BABA Ct, Helsinki, Finland
[2] Helsinki Univ Hosp, HUS Diagnost Ctr, Helsinki, Finland
[3] Univ Helsinki, Helsinki, Finland
[4] Univ Montreal, St Justine Univ Hosp Ctr, Dept Paediat, Div Neurol, Montreal, PQ, Canada
[5] IRCCS Fdn Stella Maris Fdn, Stella Maris Sci Inst, Dept Dev Neurosci, Pisa, Italy
[6] Aalto Univ, Dept Comp Sci, Espoo, Finland
[7] Aalto Univ, Dept Signal Proc & Acoust, Espoo, Finland
[8] Hosp Sick Children, Dept Paediat Neurol, Toronto, ON, Canada
[9] Univ Toronto, Toronto, ON, Canada
[10] QIMR Berghofer Med Res Inst, Brain Modelling Grp, Brisbane, QLD, Australia
[11] Univ Helsinki, Helsinki Inst Life Sci, Neurosc Ctr, Helsinki, Finland
基金
欧盟地平线“2020”; 美国国家卫生研究院; 英国医学研究理事会; 加拿大健康研究院;
关键词
neonatal EEG; EEG monitoring; neonatal intensive care unit; background classifier; support vector machine; artificial neural network; EEG trend; INTERRATER AGREEMENT; PROGNOSTIC VALUE; TERM; ELECTROENCEPHALOGRAPHY; ALGORITHMS;
D O I
10.3389/fnhum.2021.675154
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
Neonatal brain monitoring in the neonatal intensive care units (NICU) requires a continuous review of the spontaneous cortical activity, i.e., the electroencephalograph (EEG) background activity. This needs development of bedside methods for an automated assessment of the EEG background activity. In this paper, we present development of the key components of a neonatal EEG background classifier, starting from the visual background scoring to classifier design, and finally to possible bedside visualization of the classifier results. A dataset with 13,200 5-minute EEG epochs (8-16 channels) from 27 infants with birth asphyxia was used for classifier training after scoring by two independent experts. We tested three classifier designs based on 98 computational features, and their performance was assessed with respect to scoring system, pre- and post-processing of labels and outputs, choice of channels, and visualization in monitor displays. The optimal solution achieved an overall classification accuracy of 97% with a range across subjects of 81-100%. We identified a set of 23 features that make the classifier highly robust to the choice of channels and missing data due to artefact rejection. Our results showed that an automated bedside classifier of EEG background is achievable, and we publish the full classifier algorithm to allow further clinical replication and validation studies.
引用
收藏
页数:15
相关论文
共 53 条
[1]   Grading hypoxic-ischemic encephalopathy severity in neonatal EEG using GMM supervectors and the support vector machine [J].
Ahmed, Rehan ;
Temko, Andriy ;
Marnane, William ;
Lightbody, Gordon ;
Boylan, Geraldine .
CLINICAL NEUROPHYSIOLOGY, 2016, 127 (01) :297-309
[2]   Improved multi-stage neonatal seizure detection using a heuristic classifier and a data-driven post-processor [J].
Ansari, A. H. ;
Cherian, P. J. ;
Dereymaeker, A. ;
Matic, V. ;
Jansen, K. ;
De Wispelaere, L. ;
Dielman, C. ;
Vervisch, J. ;
Swarte, R. M. ;
Govaert, P. ;
Naulaers, G. ;
De Vos, M. ;
Van Huffel, S. .
CLINICAL NEUROPHYSIOLOGY, 2016, 127 (09) :3014-3024
[3]   A convolutional neural network outperforming state-of-the-art sleep staging algorithms for both preterm and term infants [J].
Ansari, Amir H. ;
De Wel, Ofelie ;
Pillay, Kirubin ;
Dereymaeker, Anneleen ;
Jansen, Katrien ;
Van Huffel, Sabine ;
Naulaers, Gunnar ;
De Vos, Maarten .
JOURNAL OF NEURAL ENGINEERING, 2020, 17 (01)
[4]  
Banville H., 2019, P 2019 IEEE 29 INT W, P1
[5]   Uncovering the structure of clinical EEG signals with self-supervised learning [J].
Banville, Hubert ;
Chehab, Omar ;
Hyvarinen, Aapo ;
Engemann, Denis-Alexander ;
Gramfort, Alexandre .
JOURNAL OF NEURAL ENGINEERING, 2021, 18 (04)
[6]   Artificial neural networks: fundamentals, computing, design, and application [J].
Basheer, IA ;
Hajmeer, M .
JOURNAL OF MICROBIOLOGICAL METHODS, 2000, 43 (01) :3-31
[7]  
Borjali Alireza, 2020, Healthcare Transform, DOI [DOI 10.1089/HEAT.2019.0006, 10.1089/heat.2019.0006]
[8]   An international survey of EEG use in the neonatal intensive care unit [J].
Boylan, G. B. ;
Burgoyne, L. ;
Moore, C. ;
O'Flaherty, B. ;
Rennie, J. M. .
ACTA PAEDIATRICA, 2010, 99 (08) :1150-1155
[9]   Monitoring neonatal seizures [J].
Boylan, Geraldine B. ;
Stevenson, Nathan J. ;
Vanhatalo, Sampsa .
SEMINARS IN FETAL & NEONATAL MEDICINE, 2013, 18 (04) :202-208
[10]   SMOTE: Synthetic minority over-sampling technique [J].
Chawla, Nitesh V. ;
Bowyer, Kevin W. ;
Hall, Lawrence O. ;
Kegelmeyer, W. Philip .
2002, American Association for Artificial Intelligence (16)