Building an Open Source Classifier for the Neonatal EEG Background: A Systematic Feature-Based Approach From Expert Scoring to Clinical Visualization

被引:20
作者
Moghadam, Saeed Montazeri [1 ,2 ,3 ]
Pinchefsky, Elana [4 ]
Tse, Ilse [1 ,2 ,3 ]
Marchi, Viviana [1 ,2 ,3 ,5 ]
Kohonen, Jukka [6 ]
Kauppila, Minna [1 ,2 ,3 ]
Airaksinen, Manu [1 ,2 ,3 ,7 ]
Tapani, Karoliina [1 ,2 ,3 ]
Nevalainen, Paivi [1 ,2 ,3 ]
Hahn, Cecil [8 ,9 ]
Tam, Emily W. Y. [8 ,9 ]
Stevenson, Nathan J. [10 ]
Vanhatalo, Sampsa [1 ,2 ,3 ,11 ]
机构
[1] Childrens Hosp, Pediat Res Ctr, Dept Clin Neurophysiol, BABA Ct, Helsinki, Finland
[2] Helsinki Univ Hosp, HUS Diagnost Ctr, Helsinki, Finland
[3] Univ Helsinki, Helsinki, Finland
[4] Univ Montreal, St Justine Univ Hosp Ctr, Dept Paediat, Div Neurol, Montreal, PQ, Canada
[5] IRCCS Fdn Stella Maris Fdn, Stella Maris Sci Inst, Dept Dev Neurosci, Pisa, Italy
[6] Aalto Univ, Dept Comp Sci, Espoo, Finland
[7] Aalto Univ, Dept Signal Proc & Acoust, Espoo, Finland
[8] Hosp Sick Children, Dept Paediat Neurol, Toronto, ON, Canada
[9] Univ Toronto, Toronto, ON, Canada
[10] QIMR Berghofer Med Res Inst, Brain Modelling Grp, Brisbane, QLD, Australia
[11] Univ Helsinki, Helsinki Inst Life Sci, Neurosc Ctr, Helsinki, Finland
来源
FRONTIERS IN HUMAN NEUROSCIENCE | 2021年 / 15卷
基金
加拿大健康研究院; 美国国家卫生研究院; 英国医学研究理事会; 欧盟地平线“2020”;
关键词
neonatal EEG; EEG monitoring; neonatal intensive care unit; background classifier; support vector machine; artificial neural network; EEG trend; INTERRATER AGREEMENT; PROGNOSTIC VALUE; TERM; ELECTROENCEPHALOGRAPHY; ALGORITHMS;
D O I
10.3389/fnhum.2021.675154
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
Neonatal brain monitoring in the neonatal intensive care units (NICU) requires a continuous review of the spontaneous cortical activity, i.e., the electroencephalograph (EEG) background activity. This needs development of bedside methods for an automated assessment of the EEG background activity. In this paper, we present development of the key components of a neonatal EEG background classifier, starting from the visual background scoring to classifier design, and finally to possible bedside visualization of the classifier results. A dataset with 13,200 5-minute EEG epochs (8-16 channels) from 27 infants with birth asphyxia was used for classifier training after scoring by two independent experts. We tested three classifier designs based on 98 computational features, and their performance was assessed with respect to scoring system, pre- and post-processing of labels and outputs, choice of channels, and visualization in monitor displays. The optimal solution achieved an overall classification accuracy of 97% with a range across subjects of 81-100%. We identified a set of 23 features that make the classifier highly robust to the choice of channels and missing data due to artefact rejection. Our results showed that an automated bedside classifier of EEG background is achievable, and we publish the full classifier algorithm to allow further clinical replication and validation studies.
引用
收藏
页数:15
相关论文
共 53 条
  • [1] Grading hypoxic-ischemic encephalopathy severity in neonatal EEG using GMM supervectors and the support vector machine
    Ahmed, Rehan
    Temko, Andriy
    Marnane, William
    Lightbody, Gordon
    Boylan, Geraldine
    [J]. CLINICAL NEUROPHYSIOLOGY, 2016, 127 (01) : 297 - 309
  • [2] Improved multi-stage neonatal seizure detection using a heuristic classifier and a data-driven post-processor
    Ansari, A. H.
    Cherian, P. J.
    Dereymaeker, A.
    Matic, V.
    Jansen, K.
    De Wispelaere, L.
    Dielman, C.
    Vervisch, J.
    Swarte, R. M.
    Govaert, P.
    Naulaers, G.
    De Vos, M.
    Van Huffel, S.
    [J]. CLINICAL NEUROPHYSIOLOGY, 2016, 127 (09) : 3014 - 3024
  • [3] A convolutional neural network outperforming state-of-the-art sleep staging algorithms for both preterm and term infants
    Ansari, Amir H.
    De Wel, Ofelie
    Pillay, Kirubin
    Dereymaeker, Anneleen
    Jansen, Katrien
    Van Huffel, Sabine
    Naulaers, Gunnar
    De Vos, Maarten
    [J]. JOURNAL OF NEURAL ENGINEERING, 2020, 17 (01)
  • [4] Banville H., 2019, P 2019 IEEE 29 INT W, P1
  • [5] Uncovering the structure of clinical EEG signals with self-supervised learning
    Banville, Hubert
    Chehab, Omar
    Hyvarinen, Aapo
    Engemann, Denis-Alexander
    Gramfort, Alexandre
    [J]. JOURNAL OF NEURAL ENGINEERING, 2021, 18 (04)
  • [6] Artificial neural networks: fundamentals, computing, design, and application
    Basheer, IA
    Hajmeer, M
    [J]. JOURNAL OF MICROBIOLOGICAL METHODS, 2000, 43 (01) : 3 - 31
  • [7] Borjali A., 2020, Healthc Transform heat, DOI DOI 10.1089/HEAT.2019.0006
  • [8] An international survey of EEG use in the neonatal intensive care unit
    Boylan, G. B.
    Burgoyne, L.
    Moore, C.
    O'Flaherty, B.
    Rennie, J. M.
    [J]. ACTA PAEDIATRICA, 2010, 99 (08) : 1150 - 1155
  • [9] Monitoring neonatal seizures
    Boylan, Geraldine B.
    Stevenson, Nathan J.
    Vanhatalo, Sampsa
    [J]. SEMINARS IN FETAL & NEONATAL MEDICINE, 2013, 18 (04) : 202 - 208
  • [10] SMOTE: Synthetic minority over-sampling technique
    Chawla, Nitesh V.
    Bowyer, Kevin W.
    Hall, Lawrence O.
    Kegelmeyer, W. Philip
    [J]. 2002, American Association for Artificial Intelligence (16)