A posteriori error estimator and h-adaptive finite element method for diffusion-advection-reaction problems

被引:0
|
作者
Ostapov, O. [1 ]
Vovk, O. [1 ]
Shynkarenko, H. [2 ]
机构
[1] Ivan Franko Natl Univ Lviv, Dept Informat Systemsm, Lvov, Ukraine
[2] Opole Univ Technol, Dept Math & Appl Informat, Opole, Poland
来源
RECENT ADVANCES IN COMPUTATIONAL MECHANICS | 2014年
关键词
EQUATION;
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
The goal of this paper is to construct h-adaptive finite element method for the linear and nonlinear diffusion-advection-reaction problems. The main result is the element-wise a posteriori error estimator for the piecewise linear approximations of solutions to 2D problems. On each triangle this discontinuous estimator is a quadratic polynomial, which does not require obtaining stream jumps on the mesh sides. We demonstrate the detailed structure of the estimator for the case of piecewise coefficients of the non-linear boundary value problem. Our strategy of adaptivity is based on the control of local relative error distributions and assumes using the bisection method for a local refinement of the triangulations. We illustrate the proposed h-adaptive scheme by some numerical results obtained for the linear and non-linear problems with the exact solutions.
引用
收藏
页码:329 / 337
页数:9
相关论文
共 50 条
  • [1] A POSTERIORI ERROR ESTIMATOR FOR DIFFUSION-ADVECTION-REACTION BOUNDARY VALUE PROBLEMS: PIECEWISE LINEAR APPROXIMATIONS ON TRIANGLES
    Ostapov, O. Yu.
    Shynkarenko, H. A.
    JOURNAL OF NUMERICAL AND APPLIED MATHEMATICS, 2011, 2 (105): : 111 - 123
  • [2] A conservative network element method for diffusion-advection-reaction problems
    Coatleven, Julien
    ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS, 2023, 57 (04) : 2007 - 2040
  • [3] An h-adaptive element-free Galerkin meshless method using a posteriori error estimator
    Hajjout, Imane
    Haddouch, Manal
    Boudi, El Mostapha
    MATERIALS TODAY COMMUNICATIONS, 2020, 25 (25):
  • [4] Solution of steady and transient advection problems using an h-adaptive finite element method
    Usmani, AS
    INTERNATIONAL JOURNAL OF COMPUTATIONAL FLUID DYNAMICS, 1999, 11 (3-4) : 249 - 259
  • [5] Computable two-sided a posteriori error estimates for h-adaptive Finite Element Method
    Ostapov, O. Yu.
    Vovk, O. V.
    Shynkarenko, H. A.
    ADVANCES IN MECHANICS: THEORETICAL, COMPUTATIONAL AND INTERDISCIPLINARY ISSUES, 2016, : 449 - 453
  • [6] A posteriori error estimator for eigenvalue problems by mixed finite element method
    JIA ShangHui
    CHEN HongTao
    XIE HeHu
    Science China(Mathematics), 2013, 56 (05) : 888 - 901
  • [7] A posteriori error estimator for eigenvalue problems by mixed finite element method
    ShangHui Jia
    HongTao Chen
    HeHu Xie
    Science China Mathematics, 2013, 56 : 887 - 900
  • [8] A posteriori error estimator for eigenvalue problems by mixed finite element method
    Jia ShangHui
    Chen HongTao
    Xie HeHu
    SCIENCE CHINA-MATHEMATICS, 2013, 56 (05) : 887 - 900
  • [9] h-adaptive enhanced finite element method for plane problems
    Ling D.-S.
    Bu L.-F.
    Huang G.-Q.
    Huang B.
    Zhejiang Daxue Xuebao (Gongxue Ban)/Journal of Zhejiang University (Engineering Science), 2011, 45 (12): : 2150 - 2158
  • [10] An a posteriori error estimator for an unsteady advection-diffusion-reaction problem
    Araya, Rodolfo
    Venegas, Pablo
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2014, 66 (12) : 2456 - 2476