Blackout-Tolerant Temporal Spanners

被引:3
作者
Bilo, Davide [1 ]
D'Angelo, Gianlorenzo [2 ]
Guala, Luciano [3 ]
Leucci, Stefano [1 ]
Rossi, Mirko [2 ]
机构
[1] Univ Aquila, Dept Informat Engn Comp Sci & Math, Laquila, Italy
[2] Gran Sasso Sci Inst, Laquila, Italy
[3] Univ Roma Tor Vergata, Dept Enterprise Engn, Rome, Italy
来源
ALGORITHMICS OF WIRELESS NETWORKS, ALGOSENSORS 2022 | 2022年 / 13707卷
关键词
Temporal graphs; Temporal spanners; Fault-tolerance; CONNECTIVITY;
D O I
10.1007/978-3-031-22050-0_3
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper we introduce the notions of blackout-tolerant temporal alpha-spanner of a temporal graph G which is a subgraph of G that preserves the distances between pairs of vertices of interest in G up to a multiplicative factor of alpha, even when the graph edges at a single time-instant become unavailable. In particular, we consider the single-source, single-pair, and all-pairs cases and, for each case we look at three quality requirements: exact distances (i.e., alpha = 1), almost-exact distances (i.e., alpha = 1+ epsilon for an arbitrarily small constant epsilon > 0), and connectivity (i.e., unbounded alpha). For each combination we provide tight bounds, up to polylogarithmic factors, on the size, which is measured as the number of edges, of the corresponding blackout-tolerant a-spanner for both general temporal graphs and for temporal cliques. Our result show that such spanners are either very sparse (i.e., they have (O) over tilde (n) edges) or they must have size Omega(n(2)) in the worst case, where n is the number of vertices of G. To complete the picture, we also investigate the case of multiple blackouts.
引用
收藏
页码:31 / 44
页数:14
相关论文
共 15 条
[1]   Graph spanners: A tutorial review [J].
Ahmed, Reyan ;
Bodwin, Greg ;
Sahneh, Faryad Darabi ;
Hamm, Keaton ;
Jebelli, Mohammad Javad Latifi ;
Kobourov, Stephen ;
Spence, Richard .
COMPUTER SCIENCE REVIEW, 2020, 37
[2]  
Axiotis K., 2016, P 43 INT C AUT LANG, P149, DOI DOI 10.4230/LIPICS.ICALP.2016.149
[3]  
Bilo D., 2022, LIPIcs, V244, P19
[4]  
Bilo D, 2022, Arxiv, DOI arXiv:2206.11113
[5]  
Calamai M., 2021, 19 INT S EXPT ALGORI, V190, DOI [10.4230/LIPIcs.SEA.2021.11, DOI 10.4230/LIPICS.SEA.2021.11]
[6]   Sharp Thresholds in Random Simple Temporal Graphs [J].
Casteigts, Arnaud ;
Raskin, Michael ;
Renken, Malte ;
Zamaraev, Viktor .
2021 IEEE 62ND ANNUAL SYMPOSIUM ON FOUNDATIONS OF COMPUTER SCIENCE (FOCS 2021), 2022, :319-326
[7]   Temporal cliques admit sparse spanners [J].
Casteigts, Arnaud ;
Peters, Joseph G. ;
Schoeters, Jason .
JOURNAL OF COMPUTER AND SYSTEM SCIENCES, 2021, 121 :1-17
[8]  
Fuchsle E., 2022, VIRTUAL C LIPICS, V219, DOI [10. 4230/LIPIcs.STACS.2022.30, DOI 10.4230/LIPICS.STACS.2022.30]
[9]  
Fuchsle E., 2022, 1 S ALGORITHMIC FDN, V221, DOI [10.4230/LIPIcs.SAND. 2022.17, DOI 10.4230/LIPICS.SAND.2022.17]
[10]  
Holme P., 2018, ENCY SOCIAL NETWORK, DOI [10.1007/978-1-4939-7131-242, DOI 10.1007/978-1-4939-7131-242]