Identification of magnetic resonance imaging features for the prediction of molecular profiles of newly diagnosed glioblastoma

被引:15
作者
Ahn, Sung Soo [1 ,2 ,3 ]
An, Chansik [3 ,4 ,5 ]
Park, Yae Won [1 ,2 ]
Han, Kyunghwa [1 ,2 ]
Chang, Jong Hee [6 ]
Kim, Se Hoon [7 ]
Lee, Seung-Koo [1 ,2 ]
Cha, Soonmee [3 ]
机构
[1] Yonsei Univ, Coll Med, Res Inst Radiol Sci, Dept Radiol,Severance Hosp, Seoul, South Korea
[2] Yonsei Univ, Ctr Clin Image Data Sci, Coll Med, Seoul, South Korea
[3] Univ Calif San Francisco, Dept Radiol & Biomed Imaging, San Francisco, CA 94143 USA
[4] Ilsan Hosp, Natl Hlth Insurance Serv, Dept Radiol, Goyang, South Korea
[5] Ilsan Hosp, Natl Hlth Insurance Serv, Res Inst, Goyang, South Korea
[6] Yonsei Univ, Coll Med, Dept Neurosurg, Seoul, South Korea
[7] Yonsei Univ, Coll Med, Dept Pathol, Seoul, South Korea
基金
新加坡国家研究基金会;
关键词
Glioblastoma; Magnetic resonance imaging; Molecular profiles; Molecular alterations; GENETIC-HETEROGENEITY; DIFFUSION; CLASSIFICATION; TUMORS; GLIOMAS; MRI; RADIOGENOMICS; SURVIVAL; ATLAS;
D O I
10.1007/s11060-021-03801-y
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
Purpose We predicted molecular profiles in newly diagnosed glioblastoma patients using magnetic resonance (MR) imaging features and explored the associations between imaging features and major molecular alterations. Methods This retrospective study included patients with newly diagnosed glioblastoma and available next-generation sequencing results. From preoperative MR imaging, Visually AcceSAble Rembrandt Images (VASARI) features, volumetric parameters, and apparent diffusion coefficient (ADC) values were obtained. First, univariate random forest was performed to identify gene abnormalities that could be predicted by imaging features with high accuracy and stability. Next, multivariate random forest was trained to predict the selected genes in the discovery cohort and was validated in the external cohort. Univariable logistic regression was performed to further explore the associations between imaging features and genes. Results Univariate random forest identified nine genes predicted by imaging features, with high accuracy and stability. The multivariate random forest model showed excellent performance in predicting IDH and PTPN11 mutations in the discovery cohort, which were validated in the external validation cohorts (areas under the receiver operator characteristic curve [AUCs] of 0.855 for IDH and 0.88 for PTPN11). ATRX loss and EGFR mutation were predicted with AUCs of 0.753 and 0.739, respectively, whereas PTEN could not be reliably predicted. Based on univariable logistic regression analyses, IDH, ATRX, and TP53 were clustered according to their shared imaging features, whereas EGFR and CDKN2A/B were clustered in the opposite direction. Conclusions MR imaging features are related to specific molecular alterations and can be used to predict molecular profiles in patients with newly diagnosed glioblastoma.
引用
收藏
页码:83 / 92
页数:10
相关论文
共 39 条
[1]   In Vivo Detection of EGFRvIII in Glioblastoma via Perfusion Magnetic Resonance Imaging Signature Consistent with Deep Peritumoral Infiltration: The φ-Index [J].
Bakas, Spyridon ;
Akbari, Hamed ;
Pisapia, Jared ;
Martinez-Lage, Maria ;
Rozycki, Martin ;
Rathore, Saima ;
Dahmane, Nadia ;
O'Rourke, Donald M. ;
Davatzikos, Christos .
CLINICAL CANCER RESEARCH, 2017, 23 (16) :4724-4734
[2]   Genetics of Glioblastoma: A Window into Its Imaging and Histopathologic Variability [J].
Belden, Clifford J. ;
Valdes, Pablo A. ;
Ran, Cong ;
Pastel, David A. ;
Harris, Brent T. ;
Fadul, Camilo E. ;
Israel, Mark A. ;
Paulsen, Keith ;
Roberts, David W. .
RADIOGRAPHICS, 2011, 31 (06) :1717-1740
[3]   Potential of diffusion imaging in brain tumors: A review [J].
Bode, M. K. ;
Ruohonen, J. ;
Nieminen, M. T. ;
Pyhtinen, J. .
ACTA RADIOLOGICA, 2006, 47 (06) :585-594
[4]   Heterogeneity Maintenance in Glioblastoma: A Social Network [J].
Bonavia, Rudy ;
Inda, Maria-del-Mar ;
Cavenee, Webster K. ;
Furnari, Frank B. .
CANCER RESEARCH, 2011, 71 (12) :4055-4060
[5]   Comprehensive, Integrative Genomic Analysis of Diffuse Lower-Grade Gliomas [J].
Brat, Daniel J. ;
Verhaak, Roel G. W. ;
Al-dape, Kenneth D. ;
Yung, W. K. Alfred ;
Salama, Sofie R. ;
Cooper, Lee A. D. ;
Rheinbay, Esther ;
Miller, C. Ryan ;
Vitucci, Mark ;
Morozova, Olena ;
Robertson, A. Gordon ;
Noushmehr, Houtan ;
Laird, Peter W. ;
Cherniack, Andrew D. ;
Akbani, Rehan ;
Huse, Jason T. ;
Ciriello, Giovanni ;
Poisson, Laila M. ;
Barnholtz-Sloan, Jill S. ;
Berger, Mitchel S. ;
Brennan, Cameron ;
Colen, Rivka R. ;
Colman, Howard ;
Flanders, Adam E. ;
Giannini, Caterina ;
Grifford, Mia ;
Iavarone, Antonio ;
Jain, Rajan ;
Joseph, Isaac ;
Kim, Jaegil ;
Kasaian, Katayoon ;
Mikkelsen, Tom ;
Murray, Bradley A. ;
O'Neill, Brian Patrick ;
Pachter, Lior ;
Parsons, Donald W. ;
Sougnez, Carrie ;
Sulman, Erik P. ;
Vandenberg, Scott R. ;
Van Meir, Erwin G. ;
von Deimling, Andreas ;
Zhang, Hailei ;
Crain, Daniel ;
Lau, Kevin ;
Mallery, David ;
Morris, Scott ;
Paulauskis, Joseph ;
Penny, Robert ;
Shelton, Troy ;
Sherman, Mark .
NEW ENGLAND JOURNAL OF MEDICINE, 2015, 372 (26) :2481-2498
[6]   The Somatic Genomic Landscape of Glioblastoma [J].
Brennan, Cameron W. ;
Verhaak, Roel G. W. ;
McKenna, Aaron ;
Campos, Benito ;
Noushmehr, Houtan ;
Salama, Sofie R. ;
Zheng, Siyuan ;
Chakravarty, Debyani ;
Sanborn, J. Zachary ;
Berman, Samuel H. ;
Beroukhim, Rameen ;
Bernard, Brady ;
Wu, Chang-Jiun ;
Genovese, Giannicola ;
Shmulevich, Ilya ;
Barnholtz-Sloan, Jill ;
Zou, Lihua ;
Vegesna, Rahulsimham ;
Shukla, Sachet A. ;
Ciriello, Giovanni ;
Yung, W. K. ;
Zhang, Wei ;
Sougnez, Carrie ;
Mikkelsen, Tom ;
Aldape, Kenneth ;
Bigner, Darell D. ;
Van Meir, Erwin G. ;
Prados, Michael ;
Sloan, Andrew ;
Black, Keith L. ;
Eschbacher, Jennifer ;
Finocchiaro, Gaetano ;
Friedman, William ;
Andrews, David W. ;
Guha, Abhijit ;
Iacocca, Mary ;
O'Neill, Brian P. ;
Foltz, Greg ;
Myers, Jerome ;
Weisenberger, Daniel J. ;
Penny, Robert ;
Kucherlapati, Raju ;
Perou, Charles M. ;
Hayes, D. Neil ;
Gibbs, Richard ;
Marra, Marco ;
Mills, Gordon B. ;
Lander, Eric ;
Spellman, Paul ;
Wilson, Richard .
CELL, 2013, 155 (02) :462-477
[7]   Comprehensive genomic characterization defines human glioblastoma genes and core pathways [J].
Chin, L. ;
Meyerson, M. ;
Aldape, K. ;
Bigner, D. ;
Mikkelsen, T. ;
VandenBerg, S. ;
Kahn, A. ;
Penny, R. ;
Ferguson, M. L. ;
Gerhard, D. S. ;
Getz, G. ;
Brennan, C. ;
Taylor, B. S. ;
Winckler, W. ;
Park, P. ;
Ladanyi, M. ;
Hoadley, K. A. ;
Verhaak, R. G. W. ;
Hayes, D. N. ;
Spellman, Paul T. ;
Absher, D. ;
Weir, B. A. ;
Ding, L. ;
Wheeler, D. ;
Lawrence, M. S. ;
Cibulskis, K. ;
Mardis, E. ;
Zhang, Jinghui ;
Wilson, R. K. ;
Donehower, L. ;
Wheeler, D. A. ;
Purdom, E. ;
Wallis, J. ;
Laird, P. W. ;
Herman, J. G. ;
Schuebel, K. E. ;
Weisenberger, D. J. ;
Baylin, S. B. ;
Schultz, N. ;
Yao, Jun ;
Wiedemeyer, R. ;
Weinstein, J. ;
Sander, C. ;
Gibbs, R. A. ;
Gray, J. ;
Kucherlapati, R. ;
Lander, E. S. ;
Myers, R. M. ;
Perou, C. M. ;
McLendon, Roger .
NATURE, 2008, 455 (7216) :1061-1068
[8]   Imaging Genetic Heterogeneity in Glioblastoma and Other Glial Tumors: Review of Current Methods and Future Directions [J].
Chow, Daniel ;
Chang, Peter ;
Weinberg, Brent D. ;
Bota, Daniela A. ;
Grinband, Jack ;
Filippi, Christopher G. .
AMERICAN JOURNAL OF ROENTGENOLOGY, 2018, 210 (01) :30-38
[9]   An analysis of image texture, tumor location, and MGMT promoter methylation in glioblastoma using magnetic resonance imaging [J].
Drabycz, Sylvia ;
Roldan, Gloria ;
de Robles, Paula ;
Adler, Daniel ;
McIntyre, John B. ;
Magliocco, Anthony M. ;
Cairncross, J. Gregory ;
Mitchell, J. Ross .
NEUROIMAGE, 2010, 49 (02) :1398-1405
[10]   Probabilistic Radiographic Atlas of Glioblastoma Phenotypes [J].
Ellingson, B. M. ;
Lai, A. ;
Harris, R. J. ;
Selfridge, J. M. ;
Yong, W. H. ;
Das, K. ;
Pope, W. B. ;
Nghiemphu, P. L. ;
Vinters, H. V. ;
Liau, L. M. ;
Mischel, P. S. ;
Cloughesy, T. F. .
AMERICAN JOURNAL OF NEURORADIOLOGY, 2013, 34 (03) :533-540