Conformational changes allow processing of bulky substrates by a haloalkane dehalogenase with a small and buried active site

被引:9
作者
Kokkonen, Piia [1 ,2 ]
Bednar, David [1 ,2 ]
Dockalova, Veronika [1 ,2 ]
Prokop, Zbynek [1 ,2 ]
Damborsky, Jiri [1 ,2 ]
机构
[1] Masaryk Univ, Res Ctr Tox Cpds Environm RECETOX, Dept Expt Biol, Loschmidt Labs, Kamenice 5-A13, Brno 62500, Czech Republic
[2] St Annes Univ Hosp, Int Ctr Clin Res, Pekarska 53, Brno 65691, Czech Republic
关键词
enzyme kinetics; enzyme mechanism; protein conformation; molecular dynamics; molecular evolution; active site; conformational change; enzyme catalysis; haloalkane dehalogenase; dichloroethane degradation; ethylene dichloride; organic halogen; organohalogen; MOLECULAR-DYNAMICS SIMULATIONS; X-RAY-STRUCTURE; HALIDE-BINDING; SPECIFICITY; TIME; MECHANISM; BOND; MUTATIONS; EVOLUTION; GEOMETRY;
D O I
10.1074/jbc.RA117.000328
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Haloalkane dehalogenases catalyze the hydrolysis of halogen-carbon bonds in organic halogenated compounds and as such are of great utility as biocatalysts. The crystal structures of the haloalkane dehalogenase DhlA from the bacterium from Xanthobacter autotrophicus GJ10, specifically adapted for the conversion of the small 1,2-dichloroethane (DCE) molecule, display the smallest catalytic site (110 angstrom(3)) within this enzyme family. However, during a substrate-specificity screening, we noted that DhlA can catalyze the conversion of far bulkier substrates, such as the 4-(bromomethyl)-6,7-dimethoxy-coumarin (220 angstrom(3)). This large substrate cannot bind to DhlA without conformational alterations. These conformational changes have been previously inferred from kinetic analysis, but their structural basis has not been understood. Using molecular dynamic simulations, we demonstrate here the intrinsic flexibility of part of the cap domain that allows DhlA to accommodate bulky substrates. The simulations displayed two routes for transport of substrates to the active site, one of which requires the conformational change and is likely the route for bulky substrates. These results provide insights into the structure-dynamics function relationships in enzymes with deeply buried active sites. Moreover, understanding the structural basis for the molecular adaptation of DhlA to 1,2-dichloroethane introduced into the biosphere during the industrial revolution provides a valuable lesson in enzyme design by nature.
引用
收藏
页码:11505 / 11512
页数:8
相关论文
共 62 条
[1]   H++3.0: automating pK prediction and the preparation of biomolecular structures for atomistic molecular modeling and simulations [J].
Anandakrishnan, Ramu ;
Aguilar, Boris ;
Onufriev, Alexey V. .
NUCLEIC ACIDS RESEARCH, 2012, 40 (W1) :W537-W541
[2]  
[Anonymous], PYMOL MOL GRAPH SYST
[3]   Active Site Hydrophobicity and the Convergent Evolution of Paraoxonase Activity in Structurally Divergent Enzymes: The Case of Serum Paraoxonase 1 [J].
Blaha-Nelson, David ;
Kruger, Dennis M. ;
Szeler, Klaudia ;
Ben-David, Moshe ;
Kamerlin, Shina Caroline Lynn .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2017, 139 (03) :1155-1167
[4]   Engineered control of enzyme structural dynamics and function [J].
Boehr, David D. ;
D'Amico, Rebecca N. ;
O'Rourke, Kathleen F. .
PROTEIN SCIENCE, 2018, 27 (04) :825-838
[5]   Halide-stabilizing residues of haloalkane dehalogenases studied by quantum mechanic calculations and site-directed mutagenesis [J].
Bohac, M ;
Nagata, Y ;
Prokop, Z ;
Prokop, M ;
Monincová, M ;
Tsuda, M ;
Koca, J ;
Damborsky, J .
BIOCHEMISTRY, 2002, 41 (48) :14272-14280
[6]   Engineering a de Novo Transport Tunnel [J].
Brezovsky, Jan ;
Babkova, Petra ;
Degtjarik, Oksana ;
Fortova, Andrea ;
Gora, Artur ;
Iermak, Iuliia ;
Rezacova, Pavlina ;
Dvorak, Pavel ;
Smatanova, Ivana Kuta ;
Prokop, Zbynek ;
Chaloupkova, Radka ;
Damborsky, Jiri .
ACS CATALYSIS, 2016, 6 (11) :7597-7610
[7]   CHARMM: The Biomolecular Simulation Program [J].
Brooks, B. R. ;
Brooks, C. L., III ;
Mackerell, A. D., Jr. ;
Nilsson, L. ;
Petrella, R. J. ;
Roux, B. ;
Won, Y. ;
Archontis, G. ;
Bartels, C. ;
Boresch, S. ;
Caflisch, A. ;
Caves, L. ;
Cui, Q. ;
Dinner, A. R. ;
Feig, M. ;
Fischer, S. ;
Gao, J. ;
Hodoscek, M. ;
Im, W. ;
Kuczera, K. ;
Lazaridis, T. ;
Ma, J. ;
Ovchinnikov, V. ;
Paci, E. ;
Pastor, R. W. ;
Post, C. B. ;
Pu, J. Z. ;
Schaefer, M. ;
Tidor, B. ;
Venable, R. M. ;
Woodcock, H. L. ;
Wu, X. ;
Yang, W. ;
York, D. M. ;
Karplus, M. .
JOURNAL OF COMPUTATIONAL CHEMISTRY, 2009, 30 (10) :1545-1614
[8]  
Case DA, 2015, AMBER
[9]   CAVER 3.0: A Tool for the Analysis of Transport Pathways in Dynamic Protein Structures [J].
Chovancova, Eva ;
Pavelka, Antonin ;
Benes, Petr ;
Strnad, Ondrej ;
Brezovsky, Jan ;
Kozlikova, Barbora ;
Gora, Artur ;
Sustr, Vilem ;
Klvana, Martin ;
Medek, Petr ;
Biedermannova, Lada ;
Sochor, Jiri ;
Damborsky, Jiri .
PLOS COMPUTATIONAL BIOLOGY, 2012, 8 (10)
[10]   Analysis of the reaction mechanism and substrate specificity of haloalkane dehalogenases by sequential and structural comparisons [J].
Damborsky, J ;
Koca, J .
PROTEIN ENGINEERING, 1999, 12 (11) :989-998