Quantitative Analysis of Protein-Lipid Interactions Using Tryptophan Fluorescence

被引:35
|
作者
Kraft, Catherine A. [1 ]
Garrido, Jose Luis [1 ]
Leiva-Vega, Luis [1 ]
Romero, Guillermo [1 ]
机构
[1] Univ Pittsburgh, Sch Med, Dept Pharmacol & Chem Biol, Pittsburgh, PA 15261 USA
关键词
PHOSPHATIDIC-ACID; RAF-1; KINASE; ULTRAVIOLET FLUORESCENCE; MEMBRANE TOPOLOGY; BINDING; INSERTION; TRANSLOCATION; ASSOCIATION; CHOLESTEROL; PEPTIDES;
D O I
10.1126/scisignal.299pl4
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The fluorescent properties of the amino acid tryptophan make it a useful tool for fluorometric assays. Because tryptophan fluorescence is remarkably sensitive to the polarity of the environment, it can be used to determine the affinity of tryptophan-containing peptides for phospholipid vesicles of varying compositions. Here, we describe a method for using tryptophan fluorescence to determine the binding affinities of peptides derived from the proteins Raf-1 and KSR-1 to small unilamellar vesicles containing phosphatidic acid. The method can be extrapolated to measure the binding of other tryptophan-containing peptides or proteins to lipid vesicles.
引用
收藏
页数:7
相关论文
共 50 条
  • [21] Lipid rafts and Alzheimer's disease: protein-lipid interactions and perturbation of signaling
    Hicks, David A.
    Nalivaeva, Natalia N.
    Turner, Anthony J.
    FRONTIERS IN PHYSIOLOGY, 2012, 3
  • [22] Unravelling the structural complexity of protein-lipid interactions with neutron reflectometry
    Clifton, Luke A.
    BIOCHEMICAL SOCIETY TRANSACTIONS, 2021, 49 (04) : 1537 - 1546
  • [23] Protein-lipid charge interactions control the folding of outer membrane proteins into asymmetric membranes
    Machin, Jonathan M.
    Kalli, Antreas C.
    Ranson, Neil A.
    Radford, Sheena E.
    NATURE CHEMISTRY, 2023, 15 (12) : 1754 - +
  • [24] PyLipID: A Python']Python Package for Analysis of Protein-Lipid Interactions from Molecular Dynamics Simulations
    Song, Wanling
    Corey, Robin A.
    Ansell, T. Bertie
    Cassidy, C. Keith
    Horrell, Michael R.
    Duncan, Anna L.
    Stansfeld, Phillip J.
    Sansom, Mark S. P.
    JOURNAL OF CHEMICAL THEORY AND COMPUTATION, 2022, 18 (02) : 1188 - 1201
  • [25] Microfluidic Diffusion Platform for Characterizing the Sizes of Lipid Vesicles and the Thermodynamics of Protein-Lipid Interactions
    Gang, Hongze
    Galvagnion, Celine
    Meisl, Georg
    Muller, Thomas
    Pfammatter, Manuela
    Buell, Alexander K.
    Levin, Aviad
    Dobson, Christopher M.
    Mu, Bozhong
    Knowles, Tuomas P. J.
    ANALYTICAL CHEMISTRY, 2018, 90 (05) : 3284 - 3290
  • [26] Insights into Membrane Protein-Lipid Interactions from Free Energy Calculations
    Corey, Robin A.
    Vickery, Owen N.
    Sansom, Mark S. P.
    Stansfeld, Phillip J.
    JOURNAL OF CHEMICAL THEORY AND COMPUTATION, 2019, 15 (10) : 5727 - 5736
  • [27] Modeling the molecular fingerprint of protein-lipid interactions of MLKL on complex bilayers
    Ramirez, Ricardo X.
    Campbell, Oluwatoyin
    Pradhan, Apoorva J.
    Atilla-Gokcumen, G. Ekin
    Monje-Galvan, Viviana
    FRONTIERS IN CHEMISTRY, 2023, 10
  • [28] Plant Phospholipid Diversity: Emerging Functions in Metabolism and Protein-Lipid Interactions
    Nakamura, Yuki
    TRENDS IN PLANT SCIENCE, 2017, 22 (12) : 1027 - 1040
  • [29] Tryptophan-Lipid Interactions in Membrane Protein Folding Probed by Ultraviolet Resonance Raman and Fluorescence Spectroscopy
    Sanchez, Katheryn M.
    Kang, Guipeun
    Wu, Beijing
    Kim, Judy E.
    BIOPHYSICAL JOURNAL, 2011, 100 (09) : 2121 - 2130
  • [30] Native Mass Spectrometry of Membrane Protein-Lipid Interactions in Different Detergent Environments
    Kumar, Smriti
    Stover, Lauren
    Wang, Lie
    Bahramimoghaddam, Hanieh
    Zhou, Ming
    Russell, David H.
    Laganowsky, Arthur
    ANALYTICAL CHEMISTRY, 2024, 96 (42) : 16768 - 16776