Image segmentation;
OBIA;
Land use/land cover mapping;
Auxiliary data;
Random Forest;
Satellite Time Series;
IMAGE-ANALYSIS;
RANDOM FOREST;
MT;
KILIMANJARO;
TIME-SERIES;
SURFACE TEMPERATURE;
SOUTHERN SLOPES;
ANCILLARY DATA;
VEGETATION;
MULTISOURCE;
SELECTION;
D O I:
10.1016/j.rse.2019.111354
中图分类号:
X [环境科学、安全科学];
学科分类号:
08 ;
0830 ;
摘要:
Classifying land use/land cover (LULC) with sufficient accuracy in heterogeneous landscapes is challenging using only satellite imagery. To improve classification accuracy inclusion of features from auxiliary geospatial datasets in classification models is applied since 1980s. However, the method is mostly limited to pixel-based classifications, and the coverage, accuracy and resolution of free and open-access auxiliary datasets have been poor until recent years. We evaluated how recent global coverage open-access geospatial datasets improve object-based LULC classification accuracy compared to using only spectral and texture features from satellite images. We applied feature sets topography, population, soil, canopy cover, distance to watercourses and spectral-temporal metrics from Landsat-8 time series on the southern foothills and savanna of Mt. Kilimanjaro, Tanzania, where the landscape is characterized by heterogeneous and fragmented mosaic of disturbed savanna vegetation, croplands, and settlements. The classification was based on image objects (groups of spectrally similar pixels) derived from segmentation of four Formosat-2 scenes with 8 m spatial resolution using 1370 ground reference points for training, validation, and for defining 17 LULC classes. We built six Random Forest classification models with different sets of object features in each. The baseline model having only spectral and texture features was compared with five other models supplemented with auxiliary features. Inclusion of auxiliary features significantly improved classification overall accuracy (OA). The baseline model gave a median OA of 60.7%, but auxiliary features in other models increased median OA between 6.1 and 16.5 percentage points. The best OA was achieved with a model including all features of which elevation was the most important auxiliary feature followed by Enhanced Vegetation Index temporal range and slope degree. Applying object-based classification to geospatial information on topography, soil, settlement patterns and vegetation phenology, the discriminatory potential of challenging LULC classes can be significantly improved. We demonstrated this for the first time, and the technique shows good potential for improving LULC mapping across a multitude of fragmented landscapes worldwide.
机构:
ICIPE, POB 30772, Nairobi 00100, KenyaICIPE, POB 30772, Nairobi 00100, Kenya
Richard, Kyalo
Abdel-Rahman, Elfatih M.
论文数: 0引用数: 0
h-index: 0
机构:
ICIPE, POB 30772, Nairobi 00100, Kenya
Univ Khartoum, Dept Agron, Fac Agr, Khartoum 13314, SudanICIPE, POB 30772, Nairobi 00100, Kenya
Abdel-Rahman, Elfatih M.
Subramanian, Sevgan
论文数: 0引用数: 0
h-index: 0
机构:
ICIPE, POB 30772, Nairobi 00100, KenyaICIPE, POB 30772, Nairobi 00100, Kenya
Subramanian, Sevgan
Nyasani, Johnson O.
论文数: 0引用数: 0
h-index: 0
机构:
ICIPE, POB 30772, Nairobi 00100, Kenya
Kenya Agr & Livestock Res Org, Crop Hlth Unit, Embu Res Ctr, POB 27, Embu 60100, KenyaICIPE, POB 30772, Nairobi 00100, Kenya
Nyasani, Johnson O.
Thiel, Michael
论文数: 0引用数: 0
h-index: 0
机构:
Univ Wurzburg, Dept Remote Sensing, Oswald Kulpe Weg 86, D-97074 Wurzburg, GermanyICIPE, POB 30772, Nairobi 00100, Kenya
Thiel, Michael
Jozani, Hosein
论文数: 0引用数: 0
h-index: 0
机构:
Univ Wurzburg, Dept Remote Sensing, Oswald Kulpe Weg 86, D-97074 Wurzburg, GermanyICIPE, POB 30772, Nairobi 00100, Kenya
Jozani, Hosein
Borgemeister, Christian
论文数: 0引用数: 0
h-index: 0
机构:
Univ Bonn, Dept Ecol & Nat Resources Management, Ctr Dev Res ZEF, Walter Flex Str 3, D-53113 Bonn, GermanyICIPE, POB 30772, Nairobi 00100, Kenya
Borgemeister, Christian
Landmann, Tobias
论文数: 0引用数: 0
h-index: 0
机构:
ICIPE, POB 30772, Nairobi 00100, KenyaICIPE, POB 30772, Nairobi 00100, Kenya
机构:
ICIPE, POB 30772, Nairobi 00100, KenyaICIPE, POB 30772, Nairobi 00100, Kenya
Richard, Kyalo
Abdel-Rahman, Elfatih M.
论文数: 0引用数: 0
h-index: 0
机构:
ICIPE, POB 30772, Nairobi 00100, Kenya
Univ Khartoum, Dept Agron, Fac Agr, Khartoum 13314, SudanICIPE, POB 30772, Nairobi 00100, Kenya
Abdel-Rahman, Elfatih M.
Subramanian, Sevgan
论文数: 0引用数: 0
h-index: 0
机构:
ICIPE, POB 30772, Nairobi 00100, KenyaICIPE, POB 30772, Nairobi 00100, Kenya
Subramanian, Sevgan
Nyasani, Johnson O.
论文数: 0引用数: 0
h-index: 0
机构:
ICIPE, POB 30772, Nairobi 00100, Kenya
Kenya Agr & Livestock Res Org, Crop Hlth Unit, Embu Res Ctr, POB 27, Embu 60100, KenyaICIPE, POB 30772, Nairobi 00100, Kenya
Nyasani, Johnson O.
Thiel, Michael
论文数: 0引用数: 0
h-index: 0
机构:
Univ Wurzburg, Dept Remote Sensing, Oswald Kulpe Weg 86, D-97074 Wurzburg, GermanyICIPE, POB 30772, Nairobi 00100, Kenya
Thiel, Michael
Jozani, Hosein
论文数: 0引用数: 0
h-index: 0
机构:
Univ Wurzburg, Dept Remote Sensing, Oswald Kulpe Weg 86, D-97074 Wurzburg, GermanyICIPE, POB 30772, Nairobi 00100, Kenya
Jozani, Hosein
Borgemeister, Christian
论文数: 0引用数: 0
h-index: 0
机构:
Univ Bonn, Dept Ecol & Nat Resources Management, Ctr Dev Res ZEF, Walter Flex Str 3, D-53113 Bonn, GermanyICIPE, POB 30772, Nairobi 00100, Kenya
Borgemeister, Christian
Landmann, Tobias
论文数: 0引用数: 0
h-index: 0
机构:
ICIPE, POB 30772, Nairobi 00100, KenyaICIPE, POB 30772, Nairobi 00100, Kenya