Phase field benchmark problems for nucleation

被引:19
作者
Wu, W. [1 ,2 ]
Montiel, D. [3 ]
Guyer, J. E. [4 ]
Voorhees, P. W. [1 ,6 ]
Warren, J. A. [4 ]
Wheeler, D. [4 ]
Granasy, L. [7 ]
Pusztai, T. [7 ]
Heinonen, O. G. [2 ,5 ]
机构
[1] Northwestern Univ, Ctr Hierarch Mat Design, 2205 Tech Dr,Suite 1160, Evanston, IL 60208 USA
[2] Argonne Natl Lab, Mat Sci Div, 9700 South Cass Ave, Lemont, IL 60439 USA
[3] Univ Michigan, Dept Mat Sci & Engn, 2300 Hayward St, Ann Arbor, MI 48109 USA
[4] NIST, Mat Measurement Lab, 100 Bur Dr,MS 8300, Gaithersburg, MD 20899 USA
[5] Northwestern Argonne Inst Sci & Engn, 2205 Tech Dr,Suite 1160, Evanston, IL 60208 USA
[6] Northwestern Univ, Dept Mat Sci & Engn, 2220 Campus Dr, Evanston, IL 60208 USA
[7] Wigner Res Ctr Phys, Inst Solid State Phys & Opt, Dept Expt Solid State Phys, 29-33 Konkoly Thege Miklos Ut, H-1121 Budapest, Hungary
关键词
Phase field; Benchmark; Nucleation; KINETICS; GROWTH; MICROSTRUCTURE;
D O I
10.1016/j.commatsci.2021.110371
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We present nucleation phase field model benchmark problems, expanding on our previous benchmark problems on diffusion, precipitation, dendritic growth, linear elasticity, fluid flow and electrochemistry. Nucleation is the process in which either a new thermodynamic phase or a new structure is created, such as solidification from the melt, or self-assembly of particulates. Based on where the nucleation occurs, it can be divided into two main categories: homogeneous nucleation and heterogeneous nucleation. In the first nucleation benchmark problem, we focus on homogeneous nucleation for both single seed under different initial conditions and multiple seeds. The second nucleation benchmark problem focuses on athermal heterogeneous nucleation and nucleation behavior near the free growth limit with different undercooling driving forces.
引用
收藏
页数:11
相关论文
共 30 条
[1]   MICROSCOPIC THEORY FOR ANTIPHASE BOUNDARY MOTION AND ITS APPLICATION TO ANTIPHASE DOMAIN COARSENING [J].
ALLEN, SM ;
CAHN, JW .
ACTA METALLURGICA, 1979, 27 (06) :1085-1095
[2]   Granulation, Phase Change, and Microstructure - Kinetics of Phase Change. III [J].
Avrami, M .
JOURNAL OF CHEMICAL PHYSICS, 1941, 9 (02) :177-184
[3]   Kinetics of phase change I - General theory [J].
Avrami, M .
JOURNAL OF CHEMICAL PHYSICS, 1939, 7 (12) :1103-1112
[4]  
Avrami M., 1940, J CHEM PHYS, V8, P212
[5]   Phase-field approach to heterogeneous nucleation [J].
Castro, M .
PHYSICAL REVIEW B, 2003, 67 (03)
[6]   PRISMS-PF: A general framework for phase-field modeling with a matrix-free finite element method [J].
DeWitt, Stephen ;
Rudraraju, Shiva ;
Montiel, David ;
Andrews, W. Beck ;
Thornton, Katsuyo .
NPJ COMPUTATIONAL MATERIALS, 2020, 6 (01)
[7]  
Gaston D., 2014, J OPEN RES STW, V2
[8]   Physics-based multiscale coupling for full core nuclear reactor simulation [J].
Gaston, Derek R. ;
Permann, Cody J. ;
Peterson, John W. ;
Slaughter, Andrew E. ;
Andes, David ;
Wang, Yaqi ;
Short, Michael P. ;
Perez, Danielle M. ;
Tonks, Michael R. ;
Ortensi, Javier ;
Zou, Ling ;
Martineau, Richard C. .
ANNALS OF NUCLEAR ENERGY, 2015, 84 :45-54
[9]   Nucleation and bulk crystallization in binary phase field theory -: art. no. 206105 [J].
Gránásy, L ;
Börzsönyi, T ;
Pusztai, T .
PHYSICAL REVIEW LETTERS, 2002, 88 (20) :2061051-2061054
[10]   Phase field theory of heterogeneous crystal nucleation [J].
Granasy, Laszlo ;
Pusztai, Tamas ;
Saylor, David ;
Warren, James A. .
PHYSICAL REVIEW LETTERS, 2007, 98 (03)