Position control of parallel-plate microactuators for probe-based data storage

被引:91
作者
Lu, MSC [1 ]
Fedder, GK
机构
[1] Natl Tsing Hua Univ, Dept Elect Engn, Hsinchu 30013, Taiwan
[2] Natl Tsing Hua Univ, Elect Inst, Hsinchu 30013, Taiwan
[3] Carnegie Mellon Univ, Dept Elect & Comp Engn, Pittsburgh, PA 15213 USA
[4] Carnegie Mellon Univ, Inst Robot, Pittsburgh, PA 15213 USA
关键词
capacitive sensor; CMOS-MEMS; electrostatic pull-in; nonlinear plant; unstable pole;
D O I
10.1109/JMEMS.2004.835761
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In this paper, we present the use of closed-loop voltage control to extend the travel range of a parallel-plate electrostatic microactuator beyond the pull-in limit. Controller design considers nonlinearities from both the parallel-plate actuator and the capacitive position sensor to ensure robust stability within the feedback loop. Desired transient response is achieved by a pre-filter added in front of the feedback loop to shape the input command. The microactuator is characterized by static and dynamic measurements, with a spring constant of 0.17 N/m, mechanical resonant frequency of 12.4 kHz, and effective damping ratio from 0.55 to 0.35 for gaps between 2.3 to 2.65 mum. The minimum input-referred noise capacitance change is 0.5 aF/rootHz measured at a gap of 5.7 mum, corresponding to a minimum input-referred noise displacement of 0.33 nm/rootHz. Measured closed-loop step response illustrates a maximum travel distance up to 60% of the initial gap, surpassing the static pull-in limit of one-third of the gap.
引用
收藏
页码:759 / 769
页数:11
相关论文
共 29 条
[1]  
*ANS CORP, 2001, MAXW 2D FIELD SIM US
[2]   ON ISOTHERMAL SQUEEZE FILMS [J].
BLECH, JJ .
JOURNAL OF LUBRICATION TECHNOLOGY-TRANSACTIONS OF THE ASME, 1983, 105 (04) :615-620
[3]  
CABUZ C, 1999, P C EL INS DIEL PHEN, P327
[4]   Single-chip computers with microelectromechanical systems-based magnetic memory (invited) [J].
Carley, LR ;
Bain, JA ;
Fedder, GK ;
Greve, DW ;
Guillou, DF ;
Lu, MSC ;
Mukherjee, T ;
Santhanam, S ;
Abelmann, L ;
Min, S .
JOURNAL OF APPLIED PHYSICS, 2000, 87 (09) :6680-6685
[5]   Speed-energy optimization of electrostatic actuators based on pull-in [J].
Castaner, LM ;
Senturia, SD .
JOURNAL OF MICROELECTROMECHANICAL SYSTEMS, 1999, 8 (03) :290-298
[6]   Electrostatic micromechanical actuator with extended range of travel [J].
Chan, EK ;
Dutton, RW .
JOURNAL OF MICROELECTROMECHANICAL SYSTEMS, 2000, 9 (03) :321-328
[7]  
CHU PB, 1994, IEEE INT CONF ROBOT, P820, DOI 10.1109/ROBOT.1994.351387
[8]   Energy based control of the Pendubot [J].
Fantoni, I ;
Lozano, R ;
Spong, MW .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2000, 45 (04) :725-729
[9]   A hierarchical circuit-level design methodology for microelectromechanical systems [J].
Fedder, GK ;
Jing, Q .
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS II-EXPRESS BRIEFS, 1999, 46 (10) :1309-1315
[10]   Laminated high-aspect-ratio microstructures in a conventional CMOS process [J].
Fedder, GK ;
Santhanam, S ;
Reed, ML ;
Eagle, SC ;
Guillou, DF ;
Lu, MSC ;
Carley, LR .
SENSORS AND ACTUATORS A-PHYSICAL, 1996, 57 (02) :103-110