Direct transition to electroconvection in a homeotropic nematic liquid crystal

被引:21
作者
Buka, A
Dressel, B
Kramer, L
Pesch, W
机构
[1] Hungarian Acad Sci, Res Inst Solid State Phys & Opt, H-1525 Budapest, Hungary
[2] Univ Bayreuth, Inst Phys, D-95440 Bayreuth, Germany
关键词
D O I
10.1063/1.1774412
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We present an experimental and theoretical investigation of a variant of electroconvection using an unusual nematic liquid crystal in an isotropic configuration (homeotropic alignment). The significance of the system is a direct transition to the convecting state due to the negative conductivity anisotropy and positive dielectric anisotropy. We observe at onset rolls or squares depending on the frequency and amplitude of the applied ac voltage with a strong signature of the zigzag instability. Good agreement with calculations based on the underlying hydrodynamic theory is found. We also construct an extended Swift-Hohenberg model which allows us to capture complex patterns like squares with a quasiperiodic modulation. (C) 2004 American Institute of Physics.
引用
收藏
页码:793 / 802
页数:10
相关论文
共 48 条
[1]   Pattern formation in two-frequency forced parametric waves [J].
Arbell, H ;
Fineberg, J .
PHYSICAL REVIEW E, 2002, 65 (03)
[2]   Nonequilibrium-molecular-dynamics investigation of the presmectic behavior of the viscosities of a Gay-Berne nematic-liquid crystal [J].
Bennett, L ;
Hess, S .
PHYSICAL REVIEW E, 1999, 60 (05) :5561-5567
[3]   Recent developments in Rayleigh-Benard convection [J].
Bodenschatz, E ;
Pesch, W ;
Ahlers, G .
ANNUAL REVIEW OF FLUID MECHANICS, 2000, 32 :709-778
[4]  
BODENSCHATZ E, 1990, NATO ADV STUDY I B, V237, P111
[5]   Director precession and nonlinear waves in nematic liquid crystals under elliptic shear [J].
Börzsönyi, T ;
Buka, A ;
Krekhov, AP ;
Scaldin, OA ;
Kramer, L .
PHYSICAL REVIEW LETTERS, 2000, 84 (09) :1934-1937
[6]   A wavelet based algorithm for pattern analysis [J].
Bowman, C ;
Passot, T ;
Assenheimer, M ;
Newell, AC .
PHYSICA D, 1998, 119 (3-4) :250-282
[7]   Electroconvection in nematic liquid crystals with positive dielectric and negative conductivity anisotropy [J].
Buka, A ;
Dressel, B ;
Otowski, W ;
Camara, K ;
Toth-Katona, T ;
Kramer, L ;
Lindau, J ;
Pelzl, G ;
Pesch, W .
PHYSICAL REVIEW E, 2002, 66 (05) :8-051713
[8]  
Buka A., 1996, PATTERN FORMATION LI
[9]  
BUKA A, IN PRESS PHYS REV LE