Tracking Sodium-Antimonide Phase Transformations in Sodium-Ion Anodes: Insights from Operando Pair Distribution Function Analysis and Solid-State NMR Spectroscopy

被引:182
作者
Allan, Phoebe K. [1 ,2 ]
Griffin, John M. [1 ]
Darwiche, Ali [3 ,4 ]
Borkiewicz, Olaf J. [5 ]
Wiaderek, Kamila M. [5 ]
Chapman, Karena W. [5 ]
Morris, Andrew J. [6 ]
Chupas, Peter J. [5 ]
Monconduit, Laure [3 ,4 ]
Grey, Clare P. [1 ]
机构
[1] Univ Cambridge, Univ Chem Lab, Lensfield Rd, Cambridge CB2 1EW, England
[2] Univ Cambridge Gonville & Caius Coll, Trinity St, Cambridge CB2 1TA, England
[3] Univ Montpellier 2, ALISTORE European Res Inst 3104, Inst Charles Gerhardt Montpellier, CNRS,UMR 5253, F-34095 Montpellier, France
[4] CNRS, FR 3459, Reseau Stockage Electrochim Energie RS2E, F-80039 Amiens, France
[5] Argonne Natl Lab, Adv Photon Source, Xray Sci Div, Lemont, IL 60439 USA
[6] Univ Cambridge, Cavendish Lab, Theory Condensed Matter Grp, JJ Thomson Ave, Cambridge CB3 0HE, England
基金
英国工程与自然科学研究理事会;
关键词
X-RAY-DIFFRACTION; LI-ION; NEGATIVE ELECTRODES; STRUCTURAL-CHANGES; LITHIUM INSERTION; CRYSTAL-STRUCTURE; HIGH-CAPACITY; BATTERIES; SB; NANOCOMPOSITE;
D O I
10.1021/jacs.5b13273
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Operando pair distribution function (PDF) analysis and ex situ Na-23 magic-angle spinning solid-state nuclear magnetic resonance (MAS ssNMR) spectroscopy are used to gain insight into the alloying mechanism of high-capacity antimony anodes for sodium-ion batteries. Subtraction of the PDF of crystalline NaxSb phases from the total PDF, an approach constrained by chemical phase information gained from Na-23 ssNMR in reference to relevant model compounds, identifies two previously uncharacterized intermediate species formed electro-chemically; a-Na3-xSb (x approximate to 0.4-0.5), a structure locally similar to crystalline Na3Sb (c-Na3Sb) but with significant numbers of sodium vacancies and a limited correlation length, and a-Na1.7Sb, a highly amorphous structure featuring some Sb-Sb bonding. The first sodiation breaks down the crystalline antimony to form first a-Na3-xSb and, finally, crystalline Na3Sb. Desodiation results in the formation of an electrode formed of a composite of crystalline and amorphous antimony networks. We link the different reactivity of these networks to a series of sequential sodiation reactions manifesting as a cascade of processes observed in the electrochemical profile of subsequent cycles. The amorphofis network reacts at higher voltages reforming a-Na1.7Sb, then a-Na3-xSb, whereas lower potentials are required for the sodiation of crystalline antimony, which reacts to form a-Na3-xSb without the formation of a-Na3-xSb. a-Na3-xSb is converted to crystalline Na3Sb at the end of the second discharge. We find no evidence of formation of NaSb. Variable temperature Na-23 NMR experiments reveal significant sodium mobility within c-Na3Sb; this is a possible contributing factor to the excellent rate performance of Sb anodes.
引用
收藏
页码:2352 / 2365
页数:14
相关论文
共 51 条
[21]   Self-wrapped Sb/C nanocomposite as anode material for High-performance sodium-ion batteries [J].
Duan, Jian ;
Zhang, Wei ;
Wu, Chao ;
Fan, Qingjie ;
Zhang, Wuxing ;
Hu, Xianluo ;
Huang, Yunhui .
NANO ENERGY, 2015, 16 :479-487
[22]   PDFfit2 and PDFgui: computer programs for studying nanostructure in crystals [J].
Farrow, C. L. ;
Juhas, P. ;
Liu, J. W. ;
Bryndin, D. ;
Bozin, E. S. ;
Bloch, J. ;
Proffen, Th ;
Billinge, S. J. L. .
JOURNAL OF PHYSICS-CONDENSED MATTER, 2007, 19 (33)
[23]   Vanadium Clustering/Declustering in P2-Na1/2VO2 Layered Oxide [J].
Guignard, Marie ;
Carlier, Dany ;
Didier, Christophe ;
Suchomel, Matthew R. ;
Elkaim, Erik ;
Bordet, Pierre ;
Decourt, Rodolphe ;
Darriet, Jacques ;
Delmas, Claude .
CHEMISTRY OF MATERIALS, 2014, 26 (04) :1538-1548
[24]   Two-dimensional detector software: From real detector to idealised image or two-theta scan [J].
Hammersley, AP ;
Svensson, SO ;
Hanfland, M ;
Fitch, AN ;
Hausermann, D .
HIGH PRESSURE RESEARCH, 1996, 14 (4-6) :235-248
[25]   Monodisperse Antimony Nanocrystals for High-Rate Li-ion and Na-ion Battery Anodes: Nano versus Bulk [J].
He, Meng ;
Kraychyk, Kostiantyn ;
Walter, Marc ;
Kovalenko, Maksym V. .
NANO LETTERS, 2014, 14 (03) :1255-1262
[26]  
Hu L., 2015, CHEM MATER, V27, P8145
[27]  
Hu YY, 2013, NAT MATER, V12, P1130, DOI [10.1038/NMAT3784, 10.1038/nmat3784]
[28]   Controlling SEI Formation on SnSb-Porous Carbon Nanofibers for Improved Na Ion Storage [J].
Ji, Liwen ;
Gu, Meng ;
Shao, Yuyan ;
Li, Xiaolin ;
Engelhard, Mark H. ;
Arey, Bruce W. ;
Wang, Wei ;
Nie, Zimin ;
Xiao, Jie ;
Wang, Chongmin ;
Zhang, Ji-Guang ;
Liu, Jun .
ADVANCED MATERIALS, 2014, 26 (18) :2901-2908
[29]   Elucidation of the Local and Long-Range Structural Changes that Occur in Germanium Anodes in Lithium-Ion Batteries [J].
Jung, Hyeyoung ;
Allan, Phoebe K. ;
Hu, Yan-Yan ;
Borkiewicz, Olaf J. ;
Wang, Xiao-Liang ;
Han, Wei-Qiang ;
Du, Lin-Shu ;
Pickard, Chris J. ;
Chupas, Peter J. ;
Chapman, Karena W. ;
Morris, Andrew J. ;
Grey, Clare P. .
CHEMISTRY OF MATERIALS, 2015, 27 (03) :1031-1041
[30]   Pair Distribution Function Analysis and Solid State NMR Studies of Silicon Electrodes for Lithium Ion Batteries: Understanding the (De)lithiation Mechanisms [J].
Key, Baris ;
Morcrette, Mathieu ;
Tarascon, Jean-Marie ;
Grey, Clare P. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2011, 133 (03) :503-512