Prioritizing Wild Yeast Strains for Macroalgal Bioethanol Production

被引:1
作者
Hebbale, Deepthi [1 ,2 ]
Mishra, Ravi Shankar [1 ]
Ramachandra, T. V. [1 ,2 ]
机构
[1] Indian Inst Sci, Ctr Ecol Sci, Energy & Wetlands Res Grp, CES 15,New Biosci Bldg,Third Floor,E Wing New D G, Bangalore 560012, Karnataka, India
[2] Indian Inst Sci, Ctr Sustainable Technol, Bangalore 560012, Karnataka, India
关键词
Bioethanol; Macroalgae; Fermentation; Yeast; Thermotolerant; Ethanologenic; ETHANOL-PRODUCTION; SACCHAROMYCES-CEREVISIAE; KLUYVEROMYCES-MARXIANUS; GRACILARIA-VERRUCOSA; FERMENTING YEAST; HIGH-TEMPERATURE; MARINE YEAST; ULVA-LACTUCA; BIO-ETHANOL; FERMENTATION;
D O I
10.1007/s12155-021-10283-3
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Y Macroalgal biomass for bioethanol production has proved to be a viable alternative to feedstocks of first-generation (food crops rich in starch) and second-generation biofuel (agricultural residues and woody biomasses rich in lignocellulosic components). Production of bioethanol from biomass involves fermentation of mixed monosugars such as glucose, xylose, galactose, rhamnose, mannose, and fucose, and abundant monomer is found in algal biomass as well as lignocellulosic biomass. The inability of commonly used Saccharomyces cerevisiae to ferment xylose (pentose) sugar has led to the exploration of robust yeast strains that can utilize mixed sugars to produce ethanol. This study focuses on the isolation of yeast strains from various fruits and fermented products to determine efficacy in ethanol production using synthetic and macroalgal sugar. Two strains prioritized based on ethanol yield are Meyerozyma caribbica (isolated from cashew-fermented juice) and Pichia kudriavzevii (isolated from toddy). Strain P. kudriavzevii is thermotolerant (at 45 degrees C), whereas M. caribbica is tolerant to high salinity and produced ethanol of 2.6 g/L from 5.95 g/L of sugar, achieving 88.8% fermentation efficiency. P. kudriavzevii strain exhibits ethanol tolerance up to 4%. Fermentation of synthetic glucose produced 1.35 g/L and 1.44 g/L ethanol by M. caribbica and P. kudriavzevii strains with fermentation efficiencies of 83.6% and 94.8% respectively. M. caribbica strain fermented xylose and produced 1.4 g/L of ethanol achieving 14.9% fermentation efficiency, while simultaneous saccharification and fermentation process using P. kudriavzevii strain exhibited efficiency of 65.1% and 80.9% for Enteromorpha intestinalis and Ulva lactuca respectively. Cellulolytic activity of the prioritized strains was determined to carry out consolidated bioprocess.
引用
收藏
页码:202 / 217
页数:16
相关论文
共 50 条
[41]   Optimization of thermal acid hydrolysis for bioethanol production from Ulva rigida with yeast Pachysolen tannophilus [J].
El Harchi, M. ;
Kachkach, F. Z. Fakihi ;
El Mtili, N. .
SOUTH AFRICAN JOURNAL OF BOTANY, 2018, 115 :161-169
[42]   Cachaca yeast strains: alternative starters to produce beer and bioethanol [J].
Araujo, Thalita Macedo ;
Souza, Magalhaes Teixeira ;
Santos Diniz, Raphael Hermano ;
Yamakawa, Celina Kiyomi ;
Soares, Lauren Bergmann ;
Lenczak, Jaciane Lutz ;
de Castro Oliveira, Juliana Velasco ;
Goldman, Gustavo Henrique ;
Barbosa, Edilene Alves ;
Silva Campos, Anna Clara ;
Castro, Ieso Miranda ;
Brandao, Rogelio Lopes .
ANTONIE VAN LEEUWENHOEK INTERNATIONAL JOURNAL OF GENERAL AND MOLECULAR MICROBIOLOGY, 2018, 111 (10) :1749-1766
[43]   Torulaspora quercuum shows great potential for bioethanol production from macroalgal hydrolysate [J].
Morimoto, Kazuki ;
Chiou, Tai-Ying ;
Konishi, Masaaki .
BIORESOURCE TECHNOLOGY REPORTS, 2022, 17
[44]   Enhancing bioethanol production from delactosed whey permeate by upstream desalination techniques [J].
Wagner, Christopher ;
Benecke, Christian ;
Buchholz, Heinrich ;
Beutel, Sascha .
ENGINEERING IN LIFE SCIENCES, 2014, 14 (05) :520-529
[45]   Bioethanol production from Palmyrah (Borassus flabellifer) wastes using yeast [J].
Christy, E. J. S. B. A. ;
Mahilrajan, S. ;
Chandrasena, G. ;
Kapilan, R. .
JOURNAL OF THE NATIONAL SCIENCE FOUNDATION OF SRI LANKA, 2021, 49 (04) :607-616
[46]   Pretreatment and process optimization of spent seaweed biomass (SSB) for bioethanol production using yeast (Saccharomyces cerevisiae) [J].
Sudhakar, M. P. ;
Arunkumar, K. ;
Perumal, K. .
RENEWABLE ENERGY, 2020, 153 :456-471
[47]   Engineering redox cofactor utilization for detoxification of glycolaldehyde, a key inhibitor of bioethanol production, in yeast Saccharomyces cerevisiae [J].
Jayakody, Lahiru N. ;
Horie, Kenta ;
Hayashi, Nobuyuki ;
Kitagaki, Hiroshi .
APPLIED MICROBIOLOGY AND BIOTECHNOLOGY, 2013, 97 (14) :6589-6600
[48]   Isolation and identification of thermotolerant yeast strains producing bioethanol from agro-food wastes [J].
Gherbi, Younes ;
Boudjema, Khaled ;
Djeziri, Mourad ;
Fazouane-Naimi, Fethia .
BIOMASS CONVERSION AND BIOREFINERY, 2024, 14 (19) :24497-24513
[49]   RECENT TRENDS IN BIOETHANOL PRODUCTION [J].
Semencenko, Valentina V. ;
Mojovic, Ljiljana V. ;
Petrovic, Slobodan D. ;
Ocic, Ozren J. .
HEMIJSKA INDUSTRIJA, 2011, 65 (02) :103-114
[50]   Bioethanol Production Process using the Non-conventional Yeast Candida tropicalis [J].
Jamai, Latifa ;
Ettayebi, Mohamed .
PROCEEDINGS OF 2013 INTERNATIONAL RENEWABLE AND SUSTAINABLE ENERGY CONFERENCE (IRSEC), 2013, :477-481