The critical impact of intercritical deformation on variant pairing of bainite/martensite in dual-phase steels

被引:21
|
作者
Sun, M. Y. [1 ]
Wang, X. L. [1 ]
Wang, Z. Q. [1 ]
Wang, X. M. [1 ]
Li, X. C. [1 ]
Yan, L. [2 ]
Misra, R. D. K. [3 ]
机构
[1] Univ Sci & Technol Beijing, Collaborat Innovat Ctr Steel Technol, Beijing 100083, Peoples R China
[2] State Key Lab Met Mat Marine Equipment & Applicat, Anshan 114000, Peoples R China
[3] Univ Texas El Paso, Lab Excellence Adv Steel Res, Mat Sci & Engn Program, Dept Met Mat & Biomed Engn, 500 W Univ Ave, El Paso, TX 79968 USA
关键词
Variant pairing; Dual-phase steel; Intercritical deformation; Microstructure; HEAT-AFFECTED ZONE; MECHANICAL-PROPERTIES; GRAIN-REFINEMENT; FERRITE; MICROSTRUCTURE; TRANSFORMATION; MARTENSITE; CRYSTALLOGRAPHY; AUSTENITE; TOUGHNESS;
D O I
10.1016/j.msea.2019.138668
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
We elucidate here the critical impact of intercritical deformation on variant pairing of bainite/martensite in dual-phase steels. Intercritical deformation was instrumental in significantly increasing the content of ferrite and accelerated the diffusion of carbon from ferrite to untransformed austenite, which finally transformed to martensite on quenching. In contrast, the untransformed austenite with lower enrichment of carbon transformed to bainite. Furthermore, the increase of carbon concentration In untransformed austenite, the length fraction of V1/V2 pair was increased to accommodate the strain associated with the bainite transformation. When the phase transformation product changed from bainite to martensite, all six variants with high fraction belonging to the same closed-packed (CP) group formed to accommodate the higher strain associated with martensite transformation. The steel with the lowest percentage of ferrite (25%) had the highest yield strength (583 MPa), while the yield strength (574 MPa) of steel with 58% ferrite continued to be high because of dislocation strengthening caused by intercritical deformation. Additionally, the uniform elongation was increased and yield strength to tensile strength ratio was reduced with the increase of content of ferrite in the studied steels.
引用
收藏
页数:10
相关论文
共 50 条
  • [31] Effect of Martensite Fraction on Tensile Properties of Dual-Phase Steels
    Hasegawa, Kohei
    Toji, Yuki
    Minami, Hidekazu
    Ikeda, Hiroshi
    Morikawa, Tatsuya
    Higashida, Kenji
    TETSU TO HAGANE-JOURNAL OF THE IRON AND STEEL INSTITUTE OF JAPAN, 2012, 98 (06): : 320 - 327
  • [32] Strain partitioning in dual-phase steels containing tempered martensite
    Han, Qihang
    Asgari, Alireza
    Hodgson, Peter D.
    Stanford, Nicole
    MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2014, 611 : 90 - 99
  • [33] Elastic anisotropy of dual-phase steels with varying martensite content
    Deng, Nengxiu
    Korkolis, Yannis P.
    INTERNATIONAL JOURNAL OF SOLIDS AND STRUCTURES, 2018, 141 : 264 - 278
  • [34] On the critical role of martensite hardening behavior in the paradox of local and global ductility in dual-phase steels
    Rezazadeh, V.
    Hoefnagels, J. P. M.
    Geers, M. G. D.
    Peerlings, R. H. J.
    EUROPEAN JOURNAL OF MECHANICS A-SOLIDS, 2024, 104
  • [35] Effect of martensite on the mechanical behavior of ferrite-bainite dual phase steels
    Podder, A. Saha
    Bhattacharjee, D.
    Ray, R. K.
    ISIJ INTERNATIONAL, 2007, 47 (07) : 1058 - 1064
  • [36] Effect of Martensite Morphology on Tensile Deformation of Dual-Phase Steel
    E. Ahmad
    T. Manzoor
    M. M. A. Ziai
    N. Hussain
    Journal of Materials Engineering and Performance, 2012, 21 : 382 - 387
  • [37] Effect of Martensite Morphology on Tensile Deformation of Dual-Phase Steel
    Ahmad, E.
    Manzoor, T.
    Ziai, M. M. A.
    Hussain, N.
    JOURNAL OF MATERIALS ENGINEERING AND PERFORMANCE, 2012, 21 (03) : 382 - 387
  • [38] Quantitative characterization of local deformation-fracture behavior in ferrite-martensite dual-phase steels with different martensite distributions
    Park, Myeong-heom
    Matsubayashi, Ryota
    Shibata, Akinobu
    Tsuji, Nobuhiro
    MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2024, 918
  • [39] Microstructure of martensite/bainite dual-phase grey cast iron and its strengthening mechanism
    Xing, Junbai
    Wang, Qiang
    Chang, Jinpeng
    ISIJ INTERNATIONAL, 2007, 47 (12) : 1776 - 1780
  • [40] Interaction of hydrogen and retained austenite in bainite/martensite dual-phase high strength steel
    Gu, JL
    Chang, KD
    Fang, HS
    Yang, ZG
    Bai, BZ
    JOURNAL OF IRON AND STEEL RESEARCH INTERNATIONAL, 2004, 11 (01) : 42 - 46