Optimal solid state neurons

被引:48
作者
Abu-Hassan, Kamal [1 ]
Taylor, Joseph D. [1 ]
Morris, Paul G. [1 ,2 ]
Donati, Elisa [3 ,4 ]
Bortolotto, Zuner A. [2 ]
Indiveri, Giacomo [3 ,4 ]
Paton, Julian F. R. [2 ,5 ]
Nogaret, Alain [1 ]
机构
[1] Univ Bath, Dept Phys, Bath BA2 7AY, Avon, England
[2] Univ Bristol, Sch Physiol Pharmacol & Neurosci, Bristol BS8 1TD, Avon, England
[3] Univ Zurich, Inst Neuroinformat, Winterthurerstr 190, CH-8057 Zurich, Switzerland
[4] Swiss Fed Inst Technol, Winterthurerstr 190, CH-8057 Zurich, Switzerland
[5] Univ Auckland, Fac Med & Hlth Sci, Dept Physiol, Auckland, New Zealand
基金
欧盟地平线“2020”; 英国工程与自然科学研究理事会;
关键词
CALCIUM CURRENT; ELECTROPHYSIOLOGICAL PROPERTIES; PARAMETER-ESTIMATION; SEARCH ALGORITHM; MODEL NEURONS; HYPERPOLARIZATION; DYNAMICS; NETWORK; ASSIMILATION; MODULATION;
D O I
10.1038/s41467-019-13177-3
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Bioelectronic medicine is driving the need for neuromorphic microcircuits that integrate raw nervous stimuli and respond identically to biological neurons. However, designing such circuits remains a challenge. Here we estimate the parameters of highly nonlinear conductance models and derive the ab initio equations of intracellular currents and membrane voltages embodied in analog solid-state electronics. By configuring individual ion channels of solid-state neurons with parameters estimated from large-scale assimilation of electrophysiological recordings, we successfully transfer the complete dynamics of hippocampal and respiratory neurons in silico. The solid-state neurons are found to respond nearly identically to biological neurons under stimulation by a wide range of current injection protocols. The optimization of nonlinear models demonstrates a powerful method for programming analog electronic circuits. This approach offers a route for repairing diseased biocircuits and emulating their function with biomedical implants that can adapt to biofeedback.
引用
收藏
页数:13
相关论文
共 70 条
  • [1] Abarbanel H., 2013, PREDICTING FUTURE CO
  • [2] Data assimilation with regularized nonlinear instabilities
    Abarbanel, Henry D. I.
    Kostuk, Mark
    Whartenby, William
    [J]. QUARTERLY JOURNAL OF THE ROYAL METEOROLOGICAL SOCIETY, 2010, 136 (648) : 769 - 783
  • [3] Complex parameter landscape for a complex neuron model
    Achard, Pablo
    De Schutter, Erik
    [J]. PLOS COMPUTATIONAL BIOLOGY, 2006, 2 (07) : 794 - 804
  • [4] On the use of Bayesian methods for evaluating compartmental neural models
    Baldi, P
    Vanier, MC
    Bower, JM
    [J]. JOURNAL OF COMPUTATIONAL NEUROSCIENCE, 1998, 5 (03) : 285 - 314
  • [5] Synaptic dynamics in analog VLSI
    Bartolozzi, Chiara
    Indiveri, Giacomo
    [J]. NEURAL COMPUTATION, 2007, 19 (10) : 2581 - 2603
  • [6] Neurogrid: A Mixed-Analog-Digital Multichip System for Large-Scale Neural Simulations
    Benjamin, Ben Varkey
    Gao, Peiran
    McQuinn, Emmett
    Choudhary, Swadesh
    Chandrasekaran, Anand R.
    Bussat, Jean-Marie
    Alvarez-Icaza, Rodrigo
    Arthur, John V.
    Merolla, Paul A.
    Boahen, Kwabena
    [J]. PROCEEDINGS OF THE IEEE, 2014, 102 (05) : 699 - 716
  • [7] TOPOLOGICAL AND PHENOMENOLOGICAL CLASSIFICATION OF BURSTING OSCILLATIONS
    BERTRAM, R
    BUTTE, MJ
    KIEMEL, T
    SHERMAN, A
    [J]. BULLETIN OF MATHEMATICAL BIOLOGY, 1995, 57 (03) : 413 - 439
  • [8] The voltage sensor in voltage-dependent ion channels
    Bezanilla, F
    [J]. PHYSIOLOGICAL REVIEWS, 2000, 80 (02) : 555 - 592
  • [9] Bouali S. A, 2013, PREPRINT
  • [10] Global parameter estimation of an Hodgkin-Huxley formalism using membrane voltage recordings: Application to neuro-mimetic analog integrated circuits
    Buhry, Laure
    Pace, Michele
    Saighi, Sylvain
    [J]. NEUROCOMPUTING, 2012, 81 : 75 - 85