Optimal solid state neurons

被引:48
作者
Abu-Hassan, Kamal [1 ]
Taylor, Joseph D. [1 ]
Morris, Paul G. [1 ,2 ]
Donati, Elisa [3 ,4 ]
Bortolotto, Zuner A. [2 ]
Indiveri, Giacomo [3 ,4 ]
Paton, Julian F. R. [2 ,5 ]
Nogaret, Alain [1 ]
机构
[1] Univ Bath, Dept Phys, Bath BA2 7AY, Avon, England
[2] Univ Bristol, Sch Physiol Pharmacol & Neurosci, Bristol BS8 1TD, Avon, England
[3] Univ Zurich, Inst Neuroinformat, Winterthurerstr 190, CH-8057 Zurich, Switzerland
[4] Swiss Fed Inst Technol, Winterthurerstr 190, CH-8057 Zurich, Switzerland
[5] Univ Auckland, Fac Med & Hlth Sci, Dept Physiol, Auckland, New Zealand
基金
欧盟地平线“2020”; 英国工程与自然科学研究理事会;
关键词
CALCIUM CURRENT; ELECTROPHYSIOLOGICAL PROPERTIES; PARAMETER-ESTIMATION; SEARCH ALGORITHM; MODEL NEURONS; HYPERPOLARIZATION; DYNAMICS; NETWORK; ASSIMILATION; MODULATION;
D O I
10.1038/s41467-019-13177-3
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Bioelectronic medicine is driving the need for neuromorphic microcircuits that integrate raw nervous stimuli and respond identically to biological neurons. However, designing such circuits remains a challenge. Here we estimate the parameters of highly nonlinear conductance models and derive the ab initio equations of intracellular currents and membrane voltages embodied in analog solid-state electronics. By configuring individual ion channels of solid-state neurons with parameters estimated from large-scale assimilation of electrophysiological recordings, we successfully transfer the complete dynamics of hippocampal and respiratory neurons in silico. The solid-state neurons are found to respond nearly identically to biological neurons under stimulation by a wide range of current injection protocols. The optimization of nonlinear models demonstrates a powerful method for programming analog electronic circuits. This approach offers a route for repairing diseased biocircuits and emulating their function with biomedical implants that can adapt to biofeedback.
引用
收藏
页数:13
相关论文
共 70 条
[1]  
Abarbanel H., 2013, PREDICTING FUTURE CO
[2]   Data assimilation with regularized nonlinear instabilities [J].
Abarbanel, Henry D. I. ;
Kostuk, Mark ;
Whartenby, William .
QUARTERLY JOURNAL OF THE ROYAL METEOROLOGICAL SOCIETY, 2010, 136 (648) :769-783
[3]   Complex parameter landscape for a complex neuron model [J].
Achard, Pablo ;
De Schutter, Erik .
PLOS COMPUTATIONAL BIOLOGY, 2006, 2 (07) :794-804
[4]   On the use of Bayesian methods for evaluating compartmental neural models [J].
Baldi, P ;
Vanier, MC ;
Bower, JM .
JOURNAL OF COMPUTATIONAL NEUROSCIENCE, 1998, 5 (03) :285-314
[5]   Synaptic dynamics in analog VLSI [J].
Bartolozzi, Chiara ;
Indiveri, Giacomo .
NEURAL COMPUTATION, 2007, 19 (10) :2581-2603
[6]   Neurogrid: A Mixed-Analog-Digital Multichip System for Large-Scale Neural Simulations [J].
Benjamin, Ben Varkey ;
Gao, Peiran ;
McQuinn, Emmett ;
Choudhary, Swadesh ;
Chandrasekaran, Anand R. ;
Bussat, Jean-Marie ;
Alvarez-Icaza, Rodrigo ;
Arthur, John V. ;
Merolla, Paul A. ;
Boahen, Kwabena .
PROCEEDINGS OF THE IEEE, 2014, 102 (05) :699-716
[7]   TOPOLOGICAL AND PHENOMENOLOGICAL CLASSIFICATION OF BURSTING OSCILLATIONS [J].
BERTRAM, R ;
BUTTE, MJ ;
KIEMEL, T ;
SHERMAN, A .
BULLETIN OF MATHEMATICAL BIOLOGY, 1995, 57 (03) :413-439
[8]   The voltage sensor in voltage-dependent ion channels [J].
Bezanilla, F .
PHYSIOLOGICAL REVIEWS, 2000, 80 (02) :555-592
[9]  
Bouali S. A, 2013, PREPRINT
[10]   Global parameter estimation of an Hodgkin-Huxley formalism using membrane voltage recordings: Application to neuro-mimetic analog integrated circuits [J].
Buhry, Laure ;
Pace, Michele ;
Saighi, Sylvain .
NEUROCOMPUTING, 2012, 81 :75-85