Complex geometry macroporous SiC ceramics obtained by 3D-printing, polymer impregnation and pyrolysis (PIP) and chemical vapor deposition (CVD)

被引:46
作者
Baux, A. [1 ]
Jacques, S. [1 ]
Allemand, A. [1 ,2 ]
Vignoles, G. L. [1 ]
David, P. [2 ]
Piquero, T. [2 ]
Stempin, M-P [3 ]
Chollon, G. [1 ]
机构
[1] LCTS CNRS, 3 Allee Boetie, F-33600 Pessac, France
[2] CEA DAM, F-37260 Le Ripault, Monts, France
[3] CANOE, 16 Ave Pey Berland, F-33600 Pessac, France
关键词
Fused deposition modeling (FDM); Silicon carbide; Polymer-derived ceramics (PDC); Chemical vapor deposition (CVD); Oxidation resistance; HIGH-POROSITY MATERIALS; SILICON-CARBIDE; OXIDATION-KINETICS; VOLUMETRIC RECEIVERS; FABRICATION; COMPONENTS; SURFACES; PHASE;
D O I
10.1016/j.jeurceramsoc.2021.01.008
中图分类号
TQ174 [陶瓷工业]; TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
We present here an original route for the manufacturing of SiC ceramics based on 3D printing, polymer impregnation and pyrolysis and chemical vapor deposition (CVD). The green porous elastomer structures were first prepared by fused deposition modeling (FDM) 3D-printing with a composite polyvinyl alcohol/elastomer wire and soaking in water, then impregnated with an allylhydridopolycarbosilane preceramic polymer. After crosslinking and pyrolysis, the polymer-derived ceramics were reinforced by CVD of SiC using CH3SiCl3/H2 as precursor. The multiscale structure of the SiC porous specimens was examined by X-ray tomography and scanning electron microscopy analyses. Their oxidation resistance was also studied. The pure and dense CVD-SiC coating considerably improves the oxidation resistance.
引用
收藏
页码:3274 / 3284
页数:11
相关论文
共 56 条
[1]   Evaluation of porous silicon carbide monolithic honeycombs as volumetric receivers/collectors of concentrated solar radiation [J].
Agrafiotis, Christos C. ;
Mavroidis, Ilias ;
Konstandopoulos, Athanasios G. ;
Hoffschmidt, Bernard ;
Stobbe, Pet ;
Romero, Manuel ;
Fernandez-Quero, Valerio .
SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2007, 91 (06) :474-488
[2]   Mechanical properties of periodic interpenetrating phase composites with novel architected microstructures [J].
Al-Ketan, Oraib ;
Assad, Mhd Adel ;
Abu Al-Ru, Rashid K. .
COMPOSITE STRUCTURES, 2017, 176 :9-19
[3]   Advances in solar tower technology Advances in solar tower technology [J].
Alexopoulos, Spiros ;
Hoffschmidt, Bernhard .
WILEY INTERDISCIPLINARY REVIEWS-ENERGY AND ENVIRONMENT, 2017, 6 (01)
[4]   Volumetric receivers in Solar Thermal Power Plants with Central Receiver System technology: A review [J].
Avila-Marin, Antonio L. .
SOLAR ENERGY, 2011, 85 (05) :891-910
[5]   Synthesis and properties of macroporous SiC ceramics synthesized by 3D printing and chemical vapor infiltration/deposition [J].
Baux, A. ;
Goillot, A. ;
Jacques, S. ;
Heisel, C. ;
Rochais, D. ;
Charpentier, L. ;
David, P. ;
Piquero, T. ;
Chartier, T. ;
Chollon, G. .
JOURNAL OF THE EUROPEAN CERAMIC SOCIETY, 2020, 40 (08) :2834-2854
[6]   Synthesis and properties of multiscale porosity TiC-SiC ceramics [J].
Baux, A. ;
Nouvian, L. ;
Arnaud, K. ;
Jacques, S. ;
Piquero, T. ;
Rochais, D. ;
David, P. ;
Chollon, G. .
JOURNAL OF THE EUROPEAN CERAMIC SOCIETY, 2019, 39 (08) :2601-2616
[7]   A review of studies on central receiver solar thermal power plants [J].
Behar, Omar ;
Khellaf, Abdallah ;
Mohammedi, Kamal .
RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2013, 23 :12-39
[8]   Fused Deposition Modeling Enables the Low-Cost Fabrication of Porous, Customized-Shape Sorbents for Small-Molecule Extraction [J].
Belka, Mariusz ;
Ulenberg, Szymon ;
Baczek, Tomasz .
ANALYTICAL CHEMISTRY, 2017, 89 (08) :4373-4376
[9]  
Chartier T, 2013, HANDBOOK OF ADVANCED CERAMICS: MATERIALS, APPLICATIONS, PROCESSING, AND PROPERTIES, 2ND EDITION, P489, DOI 10.1016/B978-0-12-385469-8.00028-9
[10]   3D printing of ceramics: A review [J].
Chen, Zhangwei ;
Li, Ziyong ;
Li, Junjie ;
Liu, Chengbo ;
Lao, Changshi ;
Fu, Yuelong ;
Liu, Changyong ;
Li, Yang ;
Wang, Pei ;
He, Yi .
JOURNAL OF THE EUROPEAN CERAMIC SOCIETY, 2019, 39 (04) :661-687