Multimodal Brain Tumor Segmentation Using Encoder-Decoder with Hierarchical Separable Convolution

被引:3
作者
Jia, Zhongdao [1 ]
Yuan, Zhimin [1 ]
Peng, Jialin [1 ]
机构
[1] Huaqiao Univ, Coll Comp Sci & Technol, Xiamen 361021, Peoples R China
来源
MULTIMODAL BRAIN IMAGE ANALYSIS AND MATHEMATICAL FOUNDATIONS OF COMPUTATIONAL ANATOMY | 2019年 / 11846卷
基金
中国国家自然科学基金;
关键词
Brain tumor segmentation; Hierarchical separable convolution; Contextual information;
D O I
10.1007/978-3-030-33226-6_15
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
To address automatic segmentation of brain tumor from multi-modal MRI volumes, a light-weight encoder-decoder network is presented. Exploring effective way to trade off the range of spatial contexts and computational efficiency is crucial to address challenges of 3D segmentation. To this end, we introduce hierarchical separable convolution (HSC), an integration of view- and group-wise separable convolution, which can simultaneously encode multi-scale context in 3D and reduce memory overhead without sacrificing accuracy. Specifically, typical 3D convolution is replaced with complementary 2D convolutions at multiple scales and thus multiple fields-of-view, which results in a light-weight but stronger model. Moreover, thanks to the decomposed convolutions, we ensemble 3D segmentations with different focal views to further improve segmentation accuracy. Experiments on the BRATS 2017 benchmark showed that our method achieved state-of-the-art performance in Dice, i.e., 0.901, 0.809 and 0.762 for the whole tumor, tumor core and enhancing tumor core, respectively.
引用
收藏
页码:130 / 138
页数:9
相关论文
共 19 条
[1]   Cascaded V-Net Using ROI Masks for Brain Tumor Segmentation [J].
Casamitjana, Adria ;
Cata, Marcel ;
Sanchez, Irina ;
Combalia, Marc ;
Vilaplana, Veronica .
BRAINLESION: GLIOMA, MULTIPLE SCLEROSIS, STROKE AND TRAUMATIC BRAIN INJURIES, BRAINLES 2017, 2018, 10670 :381-391
[2]   Res2Net: A New Multi-Scale Backbone Architecture [J].
Gao, Shang-Hua ;
Cheng, Ming-Ming ;
Zhao, Kai ;
Zhang, Xin-Yu ;
Yang, Ming-Hsuan ;
Torr, Philip .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2021, 43 (02) :652-662
[3]   Brain tumor segmentation with Deep Neural Networks [J].
Havaei, Mohammad ;
Davy, Axel ;
Warde-Farley, David ;
Biard, Antoine ;
Courville, Aaron ;
Bengio, Yoshua ;
Pal, Chris ;
Jodoin, Pierre-Marc ;
Larochelle, Hugo .
MEDICAL IMAGE ANALYSIS, 2017, 35 :18-31
[4]  
He KM, 2014, LECT NOTES COMPUT SC, V8691, P346, DOI [arXiv:1406.4729, 10.1007/978-3-319-10578-9_23]
[5]   Automatic 3D liver segmentation based on deep learning and globally optimized surface evolution [J].
Hu, Peijun ;
Wu, Fa ;
Peng, Jialin ;
Liang, Ping ;
Kong, Dexing .
PHYSICS IN MEDICINE AND BIOLOGY, 2016, 61 (24) :8676-8698
[6]   Brain Tumor Segmentation and Radiomics Survival Prediction: Contribution to the BRATS 2017 Challenge [J].
Isensee, Fabian ;
Kickingereder, Philipp ;
Wick, Wolfgang ;
Bendszus, Martin ;
Maier-Hein, Klaus H. .
BRAINLESION: GLIOMA, MULTIPLE SCLEROSIS, STROKE AND TRAUMATIC BRAIN INJURIES, BRAINLES 2017, 2018, 10670 :287-297
[7]   Class Balanced PixelNet for Neurological Image Segmentation [J].
Islam, Mobarakol ;
Ren, Hongliang .
PROCEEDINGS OF 2018 6TH INTERNATIONAL CONFERENCE ON BIOINFORMATICS AND COMPUTATIONAL BIOLOGY (ICBCB 2018), 2018, :83-87
[8]   Ensembles of Multiple Models and Architectures for Robust Brain Tumour Segmentation [J].
Kamnitsas, K. ;
Bai, W. ;
Ferrante, E. ;
McDonagh, S. ;
Sinclair, M. ;
Pawlowski, N. ;
Rajchl, M. ;
Lee, M. ;
Kainz, B. ;
Rueckert, D. ;
Glocker, B. .
BRAINLESION: GLIOMA, MULTIPLE SCLEROSIS, STROKE AND TRAUMATIC BRAIN INJURIES, BRAINLES 2017, 2018, 10670 :450-462
[9]   Efficient multi-scale 3D CNN with fully connected CRF for accurate brain lesion segmentation [J].
Kamnitsas, Konstantinos ;
Ledig, Christian ;
Newcombe, Virginia F. J. ;
Sirnpson, Joanna P. ;
Kane, Andrew D. ;
Menon, David K. ;
Rueckert, Daniel ;
Glocker, Ben .
MEDICAL IMAGE ANALYSIS, 2017, 36 :61-78
[10]  
Kingma DP, 2014, ADV NEUR IN, V27