Slow manifold for a nonlocal stochastic evolutionary system with fast and slow components

被引:5
作者
Bai, Lu [1 ]
Cheng, Xiujun [1 ]
Duan, Jinqiao [2 ]
Yang, Meihua [1 ]
机构
[1] Huazhong Univ Sci & Technol, Sch Math & Stat, Wuhan 430074, Hubei, Peoples R China
[2] Illinois Inst Technol, Dept Appl Math, Chicago, IL 60616 USA
关键词
Nonlocal Laplacian operator; Random dynamical systems; Random invariant manifolds; Slow manifolds; Reduced system; INVARIANT-MANIFOLDS; EQUATIONS; THEOREM; FOLIATIONS;
D O I
10.1016/j.jde.2017.06.003
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This work is devoted to investigating invariant manifolds for a fast slow stochastic evolutionary system with nonlocal diffusion. We establish the slow reduction via a random slow manifold, which captures slow dynamics of the original stochastic fast slow system. A simple example is shown to illustrate this slow reduction method. (C) 2017 Elsevier Inc. All rights reserved.
引用
收藏
页码:4870 / 4893
页数:24
相关论文
共 39 条
[1]  
[Anonymous], 1901, B SOC MATH FR
[2]  
[Anonymous], 1977, LECT NOTES MATH
[3]  
[Anonymous], 1989, Geometric Theory of Semilinear Parabolic Partial Differential Equations, DOI DOI 10.1007/BFB0089647
[4]  
[Anonymous], 2009, Levy processes and stochastic calculus
[5]  
Arnold L., 1998, Random Dynamical Systems
[6]   The Hartman-Grobman theorem for Caratheodory-type differential equations in Banach spaces [J].
Aulbach, B ;
Wanner, T .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2000, 40 (1-8) :91-104
[7]  
Bensoussan A., 1995, Stochastics Stochastics Rep., V53, P13
[8]  
Blackledge Jonathan M., 2010, IAENG International Journal of Applied Mathematics, V40, P130
[9]   Variational problems with free boundaries for the fractional Laplacian [J].
Caffarelli, Luis A. ;
Roquejoffre, Jean-Michel ;
Sire, Yannick .
JOURNAL OF THE EUROPEAN MATHEMATICAL SOCIETY, 2010, 12 (05) :1151-1179
[10]   Existence of invariant manifolds for coupled parabolic and hyperbolic stochastic partial differential equations [J].
Caraballo, T ;
Chueshov, I ;
Langa, JA .
NONLINEARITY, 2005, 18 (02) :747-767