An asymptotic-numerical method to compute bifurcating branches

被引:0
|
作者
Vannucci, P
Cochelin, B
Damil, N
Potier-Ferry, M [1 ]
机构
[1] Inst Super Genie Mecan & Prud, Lab Phys & Mecan Mat, URA CNRS 1215, ISGMP, F-57045 Metz 1, France
[2] Univ Pisa, Dipartimento Ingn Strutturale, I-56126 Pisa, Italy
[3] Univ Marseille, IMT Technopole Chateau Gombert, F-134510 Marseille 13, France
[4] Univ Hassan II, Fac Sci Ben MSik, LCSM, Dept Phys, Casablanca, Morocco
关键词
asymptotic-numerical method; bifurcation; stability;
D O I
10.1002/(SICI)1097-0207(19980430)41:8<1365::AID-NME332>3.0.CO;2-Y
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
In this paper a new method to compute the bifurcating branches for an elastic structure is presented. The method is based on the asymptotic-numerical method (ANM), hat is a perturbation technique to solve problems in non-linear mechanics. Herein, we present a computing strategy to find the bifurcation points and the post-buckling branches in the framework of the ANM. Some examples are also given, which prove the effectiveness of the proposed method. A discussion of the results and of the open problems ends the paper. (C) 1998 John Wiley & Sons, Ltd.
引用
收藏
页码:1365 / 1389
页数:25
相关论文
共 50 条
  • [21] An efficient asymptotic-numerical method to solve nonlinear systems of one-dimensional balance laws
    Danilo Costarelli
    Renato Spigler
    Computational and Applied Mathematics, 2018, 37 : 6034 - 6052
  • [22] Asymptotic-numerical method to analyze the postbuckling behavior, imperfection-sensitivity, and mode interaction in frames
    Silvestre, N
    Camotim, D
    JOURNAL OF ENGINEERING MECHANICS-ASCE, 2005, 131 (06): : 617 - 632
  • [23] Fast asymptotic-numerical method for coarse mesh particle simulation in channels of arbitrary cross section
    Christensen, Samuel
    Chu, Raymond
    Anderson, Christopher
    Roper, Marcus
    JOURNAL OF COMPUTATIONAL PHYSICS, 2022, 471
  • [24] A HYBRID ASYMPTOTIC-NUMERICAL METHOD FOR LOW-REYNOLDS-NUMBER FLOWS PAST A CYLINDRICAL BODY
    KROPINSKI, MCA
    WARD, MJ
    KELLER, JB
    SIAM JOURNAL ON APPLIED MATHEMATICS, 1995, 55 (06) : 1484 - 1510
  • [25] Asymptotic-Numerical Method for Moving Fronts in Two-Dimensional R-D-A Problems
    Volkov, Vladimir
    Nefedov, Nikolay
    Antipov, Eugene
    FINITE DIFFERENCE METHODS, THEORY AND APPLICATIONS, 2015, 9045 : 408 - 416
  • [26] Bifurcation points and bifurcated branches by an asymptotic numerical method and Pade approximants
    Boutyour, EH
    Zahrouni, H
    Potier-Ferry, M
    Boudi, M
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2004, 60 (12) : 1987 - 2012
  • [27] AN ASYMPTOTIC-NUMERICAL ANALYSIS FOR THE LOWER BOUND DYNAMIC BUCKLING ESTIMATES
    吴柏生
    Acta Mechanica Sinica, 1997, 13 (02) : 165 - 170
  • [28] A Hybrid Asymptotic-Numerical Study of a Model for Intracranial Pressure Dynamics
    Yu, J.
    Lakin, D.
    Penar, P.
    Studies in Applied Mathematics, 1995, 95 (03): : 247 - 267
  • [29] Asymptotic-numerical Investigation of Generation and Motion of Fronts in Phase Transition Models
    Volkov, Vladimir
    Nefedov, Nikolay
    NUMERICAL ANALYSIS AND ITS APPLICATIONS, NAA 2012, 2013, 8236 : 524 - 531
  • [30] An Asymptotic-Numerical Method for a Class of Weakly Coupled System of Singularly Perturbed Convection-Diffusion Equations
    Kaushik, Aditya
    Vashishth, Anil K.
    Kumar, Vijayant
    Sharma, Manju
    NUMERICAL FUNCTIONAL ANALYSIS AND OPTIMIZATION, 2019, 40 (13) : 1550 - 1571