A room-temperature four-terminal spin field effect transistor

被引:12
作者
Liu, Jia [1 ,3 ]
Peng, Zhisheng [1 ,3 ]
Cai, Jinzhong [1 ,3 ]
Yue, Junyi [1 ,3 ]
Wei, Haonan [1 ,2 ]
Impundu, Julienne [1 ,3 ]
Liu, Hui [1 ,3 ]
Jin, Jiyou [1 ,3 ]
Yang, Zhu [1 ]
Chu, Weiguo [1 ,3 ]
Li, Yong Jun [1 ,3 ,4 ]
Wang, Gongtang [2 ]
Sun, Lianfeng [1 ,3 ,4 ]
机构
[1] Natl Ctr Nanosci & Technol, CAS Ctr Excellence Nanosci, CAS Key Lab Nanosyst & Hierarch Fabricat, Beijing 100190, Peoples R China
[2] Shandong Normal Univ, Sch Phys & Elect, Jinan 250014, Peoples R China
[3] Univ Chinese Acad Sci, Beijing 100049, Peoples R China
[4] GBA Natl Inst Nanotechnol Innovat, Guangzhou 510700, Guangdong, Peoples R China
基金
中国国家自然科学基金;
关键词
Single-walled carbon nanotubes; Spin field effect transistor; Magnetic moments; Ohmic contact; CARBON NANOTUBES; MAGNETORESISTANCE; SPINTRONICS;
D O I
10.1016/j.nantod.2021.101138
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
In analogy to the central role of transistors in conventional electronics, a key device in spintronics, spin field effect transistor (spin FET), has been predicted theoretically. Several approaches have been explored, but their applications remain a considerable challenge due to the small spin signals and low working temperature. In this work, we report a four-terminal spin FET using an individual SWNT with two partially open segments and the working mechanisms is closely related to the magnetic moments at these segments. The spin-related signals (Rspin) can be as large as several hundred Ohm and the spin FET works at room temperature under atmospheric conditions. Rspin can be modulated with gate voltages and external magnetic fields. The realization of spin FET may lead to the development of integrated circuit of spintronics, which is fundamentally different from charge-based conventional electronics. (c) 2021 Elsevier B.V. All rights reserved.
引用
收藏
页数:6
相关论文
共 31 条
[1]   GIANT MAGNETORESISTANCE OF (001)FE/(001) CR MAGNETIC SUPERLATTICES [J].
BAIBICH, MN ;
BROTO, JM ;
FERT, A ;
VANDAU, FN ;
PETROFF, F ;
EITENNE, P ;
CREUZET, G ;
FRIEDERICH, A ;
CHAZELAS, J .
PHYSICAL REVIEW LETTERS, 1988, 61 (21) :2472-2475
[2]   THE TRANSISTOR, A SEMI-CONDUCTOR TRIODE [J].
BARDEEN, J ;
BRATTAIN, WH .
PHYSICAL REVIEW, 1948, 74 (02) :230-231
[3]   ENHANCED MAGNETORESISTANCE IN LAYERED MAGNETIC-STRUCTURES WITH ANTIFERROMAGNETIC INTERLAYER EXCHANGE [J].
BINASCH, G ;
GRUNBERG, P ;
SAURENBACH, F ;
ZINN, W .
PHYSICAL REVIEW B, 1989, 39 (07) :4828-4830
[4]   Environmental Analysis with 2D Transition-Metal Dichalcogenide-Based Field-Effect Transistors [J].
Chen, Xiaoyan ;
Liu, Chengbin ;
Mao, Shun .
NANO-MICRO LETTERS, 2020, 12 (01)
[5]  
Chuang P, 2015, NAT NANOTECHNOL, V10, P35, DOI [10.1038/NNANO.2014.296, 10.1038/nnano.2014.296]
[6]   ELECTRONIC ANALOG OF THE ELECTROOPTIC MODULATOR [J].
DATTA, S ;
DAS, B .
APPLIED PHYSICS LETTERS, 1990, 56 (07) :665-667
[7]   Spin tunnel field-effect transistors based on two-dimensional van der Waals heterostructures [J].
Jiang, Shengwei ;
Li, Lizhong ;
Wang, Zefang ;
Shan, Jie ;
Mak, Kin Fai .
NATURE ELECTRONICS, 2019, 2 (04) :159-163
[8]   Ultrahigh-performance transparent conductive films of carbon-welded isolated single-wall carbon nanotubes [J].
Jiang, Song ;
Hou, Peng-Xiang ;
Chen, Mao-Lin ;
Wang, Bing-Wei ;
Sun, Dong-Ming ;
Tang, Dai-Ming ;
Jin, Qun ;
Guo, Qing-Xun ;
Zhang, Ding-Dong ;
Du, Jin-Hong ;
Tai, Kai-Ping ;
Tan, Jun ;
Kauppinen, Esko I. ;
Liu, Chang ;
Cheng, Hui-Ming .
SCIENCE ADVANCES, 2018, 4 (05)
[9]   Continuous, Ultra-lightweight, and Multipurpose Super-aligned Carbon Nanotube Tapes Viable over a Wide Range of Temperatures [J].
Jin, Xiang ;
Tan, Hengxin ;
Wu, Zipeng ;
Liang, Jiecun ;
Miao, Wentao ;
Lian, Chao-Sheng ;
Wang, Jiangtao ;
Liu, Kai ;
Wei, Haoming ;
Feng, Chen ;
Liu, Peng ;
Wei, Yang ;
Li, Qunqing ;
Wang, Jiaping ;
Liu, Liang ;
Li, Xide ;
Fan, Shoushan ;
Duan, Wenhui ;
Jiang, Kaili .
NANO LETTERS, 2019, 19 (10) :6756-6764
[10]   BIPOLAR SPIN SWITCH [J].
JOHNSON, M .
SCIENCE, 1993, 260 (5106) :320-323