The DEMO wall load challenge

被引:92
作者
Wenninger, R. [1 ,2 ]
Albanese, R. [3 ]
Ambrosino, R. [4 ]
Arbeiter, F. [5 ]
Aubert, J. [6 ]
Bachmann, C. [1 ]
Barbato, L. [18 ]
Barrett, T. [7 ]
Beckers, M. [8 ]
Biel, W. [8 ]
Boccaccini, L. [5 ]
Carralero, D. [2 ]
Coster, D. [2 ]
Eich, T. [2 ]
Fasoli, A. [9 ]
Federici, G. [1 ]
Firdaouss, M. [10 ]
Graves, J. [9 ]
Horacek, J. [11 ]
Kovari, M. [7 ]
Lanthaler, S. [9 ]
Loschiavo, V. [3 ]
Lowry, C. [12 ]
Lux, H. [7 ]
Maddaluno, G. [13 ]
Maviglia, F. [1 ]
Mitteau, R. [16 ]
Neu, R. [2 ,17 ]
Pfefferle, D. [9 ]
Schmid, K. [2 ]
Siccinio, M. [2 ]
Sieglin, B. [2 ]
Silva, C. [16 ]
Snicker, A. [2 ]
Subba, F. [14 ]
Varje, J. [15 ]
Zohm, H. [2 ]
机构
[1] EUROfus Programme Management Unit, Garching, Germany
[2] Max Planck Inst Plasma Phys, Garching, Germany
[3] Univ Napoli Federico II, Naples, Italy
[4] Univ Napoli Parthenope, Naples, Italy
[5] Karlsruhe Inst Technol, Karlsruhe, Germany
[6] CEA Saclay, DEN SEMT DM2S, F-91191 Gif Sur Yvette, France
[7] Culham Sci Ctr, Culham Ctr Fus Energy, Abingdon, Oxon, England
[8] Forschungszentrum Julich GmbH, Inst Energy & Climate Res, Julich, Germany
[9] Ecole Polytech Fed Lausanne, Swiss Plasma Ctr, CH-1015 Lausanne, Switzerland
[10] CEA, IRFM, F-13108 St Paul Les Durance, France
[11] Inst Plasma Phys ASCR, Prague, Czech Republic
[12] European Commiss, B-1049 Brussels, Belgium
[13] ENEA Frascati, CP 65, I-00044 Rome, Italy
[14] Politecn Torino, Dipartimento Energet, NEMO Grp, I-10129 Turin, Italy
[15] VTT Tech Res Ctr Finland, POB 1000, FI-02044 Espoo, Finland
[16] Univ Lisbon, Inst Super Tecn, Inst Plasmas & Fusao Nucl, P-1049 Lisbon, Portugal
[17] Tech Univ Munich, Garching, Germany
[18] Consorzio CREATE, Naples, Italy
关键词
DEMO; power loads; first wall;
D O I
10.1088/1741-4326/aa4fb4
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
For several reasons the challenge to keep the loads to the first wall within engineering limits is substantially higher in DEMO compared to ITER. Therefore the pre-conceptual design development for DEMO that is currently ongoing in Europe needs to be based on load estimates that are derived employing the most recent plasma edge physics knowledge. An initial assessment of the static wall heat load limit in DEMO infers that the steady state peak heat flux limit on the majority of the DEMO first wall should not be assumed to be higher than 1.0 MW m(-2). This compares to an average wall heat load of 0.29 MW m(-2) for the design EU DEMO1 2015 assuming a perfect homogeneous distribution. The main part of this publication concentrates on the development of first DEMO estimates for charged particle, radiation, fast particle (all static) and disruption heat loads. Employing an initial engineering wall design with clear optimization potential in combination with parameters for the flat-top phase (x-point configuration), loads up to 7 MW m(-2) (penalty factor for tolerances etc not applied) have been calculated. Assuming a fraction of power radiated from the x-point region between 1/5 and 1/3, peaks of the total power flux density due to radiation of 0.6-0.8 MW m(-2) are found in the outer baffle region. This first review of wall loads, and the associated limits in DEMO clearly underlines a significant challenge that necessitates substantial engineering efforts as well as a considerable consolidation of the associated physics basis.
引用
收藏
页数:11
相关论文
共 45 条
[1]  
Wenninger R., Et al., 42nd EPS Conf. on Controlled Fusion and Plasma Physics, (2015)
[2]  
Beckers M., Et al., J. Nuclear Mater. Energy Accepted, (2016)
[3]  
Raffray A., Federici G., J. Nucl. Mater., 244, pp. 85-100, (1997)
[4]  
Mitteau R., Stangeby P., Lowry C., Firdaouss M., Labidi H., Loarte A., Merola M., Pitts R., Raffray R., J. Nucl. Mater., 415, pp. S969-S972, (2011)
[5]  
Federici G., Et al., Nucl. Fusion, (2017)
[6]  
Li M., Sokolov M., Zinkle S., J. Nucl. Mater., 393, pp. 36-46, (2009)
[7]  
Hirai T., Et al., Fusion Eng. Des., 88, pp. 1798-1801, (2013)
[8]  
Linke J., Et al., Proc. Forum 2008 of the World Academy of Ceramics, (2008)
[9]  
Maviglia F., Et al., Contribution to SOFT Conf. 2016, (2016)
[10]  
Wenninger R., Et al., Nucl. Fusion, 57, 1, (2017)