Outer synchronization between two different fractional-order general complex dynamical networks

被引:0
作者
Wu Xiang-Jun [1 ]
Lu Hong-Tao [1 ]
机构
[1] Shanghai Jiao Tong Univ, Dept Comp Sci & Engn, Shanghai 200240, Peoples R China
基金
中国国家自然科学基金; 国家高技术研究发展计划(863计划);
关键词
the fractional-order system; complex networks; synchronization; bidirectional coupling; CLUSTER SYNCHRONIZATION; CHAOS;
D O I
暂无
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Outer synchronization between two different fractional-order general complex dynamical networks is investigated in this paper. Based on the stability theory of the fractional-order system, the sufficient criteria for outer synchronization are derived analytically by applying the nonlinear control and the bidirectional coupling methods. The proposed synchronization method is applicable to almost all kinds of coupled fractional-order general complex dynamical networks. Neither a symmetric nor irreducible coupling configuration matrix is required. In addition, no constraint is imposed on the inner-coupling matrix. Numerical examples are also provided to demonstrate the validity of the presented synchronization scheme. Numeric evidence shows that both the feedback strength k and the fractional order a can be chosen appropriately to adjust the synchronization effect effectively.
引用
收藏
页数:12
相关论文
共 46 条
[1]  
[Anonymous], 1999, FRACTIONAL DIFFERENT
[2]   Chaotic behavior in noninteger-order cellular neural networks [J].
Arena, P ;
Fortuna, L ;
Porto, D .
PHYSICAL REVIEW E, 2000, 61 (01) :776-781
[3]   Synchronization in complex networks [J].
Arenas, Alex ;
Diaz-Guilera, Albert ;
Kurths, Jurgen ;
Moreno, Yamir ;
Zhou, Changsong .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2008, 469 (03) :93-153
[4]   Evolution of the social network of scientific collaborations [J].
Barabási, AL ;
Jeong, H ;
Néda, Z ;
Ravasz, E ;
Schubert, A ;
Vicsek, T .
PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2002, 311 (3-4) :590-614
[5]   Emergence of scaling in random networks [J].
Barabási, AL ;
Albert, R .
SCIENCE, 1999, 286 (5439) :509-512
[6]  
Begon M., 1996, ECOLOGY
[7]   Complex networks: Structure and dynamics [J].
Boccaletti, S. ;
Latora, V. ;
Moreno, Y. ;
Chavez, M. ;
Hwang, D. -U. .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2006, 424 (4-5) :175-308
[8]   LINEAR MODELS OF DISSIPATION WHOSE Q IS ALMOST FREQUENCY INDEPENDENT-2 [J].
CAPUTO, M .
GEOPHYSICAL JOURNAL OF THE ROYAL ASTRONOMICAL SOCIETY, 1967, 13 (05) :529-&
[9]  
Chen G., 1998, CHAOS ORDER METHODOL
[10]   Enhanced synchronizability in scale-free networks [J].
Chen, Maoyin ;
Shang, Yun ;
Zhou, Changsong ;
Wu, Ye ;
Kurths, Juergen .
CHAOS, 2009, 19 (01)