Spin-orbit interactions in a nonlinear medium due to a nonlinear-induced geometric phase

被引:8
作者
Guan, Fuxin [1 ]
Hu, Yue [1 ]
Dai, Xiaoyu [2 ]
Ling, Xiaohui [3 ]
Ma, Shaojie [1 ]
Lin, Jing [4 ,5 ]
Dong, Shaohua [1 ]
Xiang, Yuanjiang [2 ]
机构
[1] Shenzhen Univ, Inst Microscale Optoelect, Shenzhen 518060, Peoples R China
[2] Hunan Univ, Sch Phys & Elect, Changsha 410082, Hunan, Peoples R China
[3] Hengyang Normal Univ, Coll Phys & Elect Engn, Hengyang 421002, Peoples R China
[4] Fudan Univ, Key Lab Micro & Nano Photon Struct, State Key Lab Surface Phys, Minist Educ, Shanghai 200433, Peoples R China
[5] Fudan Univ, Phys Dept, Shanghai 200433, Peoples R China
基金
中国国家自然科学基金;
关键词
PANCHARATNAM-BERRY PHASE; TOPOLOGICAL PHASE; POLARIZATION; MOMENTUM; LIGHT; GENERATION; PHOTONS; SPACE; BEAMS;
D O I
10.1364/OL.426124
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
In general, a spin-polarized light beam cannot couple its spin angular momentum (SAM) with intrinsic orbital angular momentum (IOAM) without spin reversal. Here we find that nonlinear media can give the spin-polarized photon an IOAM, as they travel in the media due to the nonlinear susceptibility along the transmission direction, which does not require spin reversal. To characterize this SAM-to-IOAM conversion process, we establish an evolution ray equation for photons carrying IOAM by reference to the Schrodinger equation. We further reveal the inherent physics of such a phenomenon from a full-wave perspective and find that the vortex generation originates from the nonlinear-induced geometric phase. (C) 2021 Optical Society of America
引用
收藏
页码:2758 / 2761
页数:4
相关论文
共 43 条
[1]   INTERACTIONS BETWEEN LIGHT WAVES IN A NONLINEAR DIELECTRIC [J].
ARMSTRONG, JA ;
BLOEMBERGEN, N ;
DUCUING, J ;
PERSHAN, PS .
PHYSICAL REVIEW, 1962, 127 (06) :1918-+
[2]   Orbital and intrinsic angular momentum of single photons and entangled pairs of photons generated by parametric down-conversion [J].
Arnaut, HH ;
Barbosa, GA .
PHYSICAL REVIEW LETTERS, 2000, 85 (02) :286-289
[3]   High average power second harmonic generation in air [J].
Beresna, Martynas ;
Kazansky, Peter G. ;
Svirko, Yuri ;
Barkauskas, Martynas ;
Danielius, Romas .
APPLIED PHYSICS LETTERS, 2009, 95 (12)
[4]   THE ADIABATIC PHASE AND PANCHARATNAM PHASE FOR POLARIZED-LIGHT [J].
BERRY, MV .
JOURNAL OF MODERN OPTICS, 1987, 34 (11) :1401-1407
[5]   Formation of helical beams by use of Pancharatnam-Berry phase optical elements [J].
Biener, G ;
Niv, A ;
Kleiner, V ;
Hasman, E .
OPTICS LETTERS, 2002, 27 (21) :1875-1877
[6]   Spin-orbit interactions of light [J].
Bliokh, K. Y. ;
Rodriguez-Fortuno, F. J. ;
Nori, F. ;
Zayats, A. V. .
NATURE PHOTONICS, 2015, 9 (12) :796-808
[7]   Goos-Hanchen and Imbert-Fedorov beam shifts: an overview [J].
Bliokh, K. Y. ;
Aiello, A. .
JOURNAL OF OPTICS, 2013, 15 (01)
[8]   Polarization, transverse shifts, and angular momentum conservation laws in partial reflection and refraction of an electromagnetic wave packet [J].
Bliokh, K. Yu. ;
Bliokh, Yu. P. .
PHYSICAL REVIEW E, 2007, 75 (06)
[9]   Transverse and longitudinal angular momenta of light [J].
Bliokh, Konstantin Y. ;
Nori, Franco .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2015, 592 :1-38
[10]   Geometrodynamics of polarized light: Berry phase and spin Hall effect in a gradient-index medium [J].
Bliokh, Konstantin Y. .
JOURNAL OF OPTICS A-PURE AND APPLIED OPTICS, 2009, 11 (09)