Cellulose hydrogel with tunable shape and mechanical properties: From rigid cylinder to soft scaffold

被引:46
作者
Isobe, Noriyuki [1 ,2 ]
Komamiya, Takehiro [2 ]
Kimura, Satoshi [2 ,4 ]
Kim, Ung-Jin [4 ]
Wada, Masahisa [3 ,4 ]
机构
[1] Japan Agcy Marine Earth Sci & Technol JAMSTEC, R&D Ctr Marine Biosci, 2-15 Natsushima Cho, Yokosuka, Kanagawa 2370061, Japan
[2] Univ Tokyo, Dept Biomat Sci, Grad Sch Agr & Life Sci, Bunkyo Ku, Yayoi 1-1-1, Tokyo 1138657, Japan
[3] Kyoto Univ, Grad Sch Agr, Div Forest & Biomat Sci, Sakyo Ku, Kyoto 6068502, Japan
[4] Kyung Hee Univ, Coll Life Sci, Dept Plant & Environm New Resources, 1732 Deogyeong Daero, Yongin 446701, Gyeonggi Do, South Korea
关键词
Cellulose; Hydrogel; Scaffold; Compression test; Salt leaching process; AEROGELS;
D O I
10.1016/j.ijbiomac.2018.05.071
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Cellulose hydrogel from aqueous solution of lithium bromide demonstrated excellent tunability of mechanical property and shape. A series of compression tests showed that cellulose hydrogel covered a wide range of mechanical property, where the compressive Young's modulus was controllable from 30 kPa to 1.3 MPa by changing the initial concentration of cellulose solution. Meanwhile, the diameter of the building block of gel, namely nano fibrous cellulose, was constant at 15-20 nm irrelevant of the initial concentration of cellulose solution. Moreover, thanks to the biocompatibility of cellulose, the cultivation of cartilage tissue was successful in the micro-porous sponge-like cellulose hydrogel prepared by salt-leaching process. These findings show that this environmentally benign versatile gel offers a new substrate for the biomaterial-based nanomaterial in biomedical applications. (C) 2018 Elsevier B.V. All rights reserved.
引用
收藏
页码:625 / 631
页数:7
相关论文
共 22 条
[1]   Cellulose aerogels from aqueous alkali hydroxide-urea solution [J].
Cai, Jie ;
Kimura, Satoshi ;
Wada, Masahisa ;
Kuga, Shigenori ;
Zhang, Lina .
CHEMSUSCHEM, 2008, 1 (1-2) :149-154
[2]  
Clark A.H, 1987, BIOPOLYMERS, DOI [10.1007/BFb0023330, DOI 10.1007/BFB0023330]
[3]   Scaffolds in tissue engineering bone and cartilage [J].
Hutmacher, DW .
BIOMATERIALS, 2000, 21 (24) :2529-2543
[4]   Internal surface polarity of regenerated cellulose gel depends on the species used as coagulant [J].
Isobe, Noriyuki ;
Kim, Ung-Jin ;
Kimura, Satoshi ;
Wada, Masahisa ;
Kuga, Shigenori .
JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2011, 359 (01) :194-201
[5]   Anomalous reinforcing effects in cellulose gel-based polymeric nanocomposites [J].
Isobe, Noriyuki ;
Sekine, Masahiro ;
Kimura, Satoshi ;
Wada, Masahisa ;
Kuga, Shigenori .
CELLULOSE, 2011, 18 (02) :327-333
[6]   Cellulose-silk fibroin hydrogels prepared in a lithium bromide aqueous solution [J].
Kim, Hyeon Joo ;
Yang, Yeo Jeong ;
Oh, Hyun Ju ;
Kimura, Satoshi ;
Wada, Masahisa ;
Kim, Ung-Jin .
CELLULOSE, 2017, 24 (11) :5079-5088
[7]   Three-dimensional aqueous-derived biomaterial scaffolds from silk fibroin [J].
Kim, UJ ;
Park, J ;
Kim, HJ ;
Wada, M ;
Kaplan, DL .
BIOMATERIALS, 2005, 26 (15) :2775-2785
[8]   Bacterial synthesized cellulose - artificial blood vessels for microsurgery [J].
Klemm, D ;
Schumann, D ;
Udhardt, U ;
Marsch, S .
PROGRESS IN POLYMER SCIENCE, 2001, 26 (09) :1561-1603
[9]   Aerogels with 3D Ordered Nanofiber Skeletons of Liquid-Crystalline Nanocellulose Derivatives as Tough and Transparent Insulators [J].
Kobayashi, Yuri ;
Saito, Tsuguyuki ;
Isogai, Akira .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2014, 53 (39) :10394-10397
[10]   X-ray structure of mercerized cellulose II at 1 Å resolution [J].
Langan, P ;
Nishiyama, Y ;
Chanzy, H .
BIOMACROMOLECULES, 2001, 2 (02) :410-416