Symmetry and stability of asymptotic profiles for fast diffusion equations in annuli

被引:6
作者
Akagi, Goro [1 ]
Kajikiya, Ryuji [2 ]
机构
[1] Kobe Univ, Grad Sch Syst Informat, Nada Ku, Kobe, Hyogo 6578501, Japan
[2] Saga Univ, Fac Sci & Engn, Dept Math, Saga 8408502, Japan
来源
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE | 2014年 / 31卷 / 06期
关键词
Fast diffusion equation; Semilinear elliptic equation; Asymptotic profile; Stability analysis; Symmetry breaking; SEMILINEAR ELLIPTIC-EQUATIONS; POSITIVE SOLUTIONS; UNIQUENESS; EXISTENCE; BEHAVIOR;
D O I
10.1016/j.anihpc.2013.08.006
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper is concerned with stability analysis of asymptotic profiles for (possibly sign-changing) solutions vanishing in finite time of the Cauchy-Dirichlet problems for fast diffusion equations in annuli. It is proved that the unique positive radial profile is not asymptotically stable, and moreover, it is unstable for the two-dimensional annulus. Furthermore, the method of stability analysis presented here will be also applied to exhibit symmetry breaking of least energy solutions. (C) 2013 Elsevier Masson SAS. All rights reserved.
引用
收藏
页码:1155 / 1173
页数:19
相关论文
共 21 条
[1]   Stability analysis of asymptotic profiles for sign-changing solutions to fast diffusion equations [J].
Akagi, Goro ;
Kajikiya, Ryuji .
MANUSCRIPTA MATHEMATICA, 2013, 141 (3-4) :559-587
[2]  
BERRYMAN JG, 1980, ARCH RATION MECH AN, V74, P379, DOI 10.1007/BF00249681
[3]   NON-LINEAR DIFFUSION PROBLEM ARISING IN PLASMA PHYSICS [J].
BERRYMAN, JG ;
HOLLAND, CJ .
PHYSICAL REVIEW LETTERS, 1978, 40 (26) :1720-1722
[4]   ASYMPTOTIC-BEHAVIOR OF THE NON-LINEAR DIFFUSION EQUATION NT = (N-1NX)X [J].
BERRYMAN, JG ;
HOLLAND, CJ .
JOURNAL OF MATHEMATICAL PHYSICS, 1982, 23 (06) :983-987
[5]   Asymptotics of the Fast Diffusion Equation via Entropy Estimates [J].
Blanchet, Adrien ;
Bonforte, Matteo ;
Dolbeault, Jean ;
Grillo, Gabriele ;
Vazquez, Juan Luis .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2009, 191 (02) :347-385
[6]   Sharp rates of decay of solutions to the nonlinear fast diffusion equation via functional inequalities [J].
Bonforte, M. ;
Dolbeault, J. ;
Grillo, G. ;
Vazquez, J. L. .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2010, 107 (38) :16459-16464
[7]   Fast diffusion flow on manifolds of nonpositive curvature [J].
Bonforte, Matteo ;
Grillo, Gabriele ;
Vazquez, Juan Luis .
JOURNAL OF EVOLUTION EQUATIONS, 2008, 8 (01) :99-128
[8]   Behaviour near extinction for the Fast Diffusion Equation on bounded domains [J].
Bonforte, Matteo ;
Grillo, Gabriele ;
Vazquez, Juan Luis .
JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2012, 97 (01) :1-38
[9]   Positivity, local smoothing, and Harnack inequalities for very fast diffusion equations [J].
Bonforte, Matteo ;
Luis Vazquez, Juan .
ADVANCES IN MATHEMATICS, 2010, 223 (02) :529-578
[10]   Existence of many nonequivalent nonradial positive solutions of semilinear elliptic equations on three-dimensional annuli [J].
Byeon, J .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1997, 136 (01) :136-165