Universal interfacial thermal resistance at high frequencies

被引:21
作者
Rajabpour, Ali [1 ,2 ]
Volz, Sebastian [3 ,4 ]
机构
[1] Imam Khomeini Int Univ, Dept Engn Mech, Qazvin 3414916818, Iran
[2] Inst Res Fundamental Sci IPM, Sch Nanosci, Computat Phys Sci Res Lab, Tehran, Iran
[3] CNRS, Lab Energet Mol & Macroscop, UPR 288, F-92295 Chatenay Malabry, France
[4] Ecole Cent Paris, Chim Phys Solide Lab, CNRS, F-92295 Chatenay Malabry, France
关键词
D O I
10.1103/PhysRevB.90.195444
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The existence of a universal interfacial thermal resistance in a broad range of systems is shown using linear response theory and computations of realistic materials. When the thermal excitation is modulated up to frequencies larger than the intrinsic resistance scattering rate defined in a previous paper [A. Rajabpour and S. Volz, J. Appl. Phys. 108, 094324 (2010)], the interfacial resistance becomes reversely proportional to frequency and only depends on the number of degrees of freedom involved in the heat transfer between both systems. We present molecular dynamics simulations of connected crystals corroborating these statements from both quantitative and qualitative viewpoints. This finding significantly impacts the thermal management of nanoelectronic systems at nanoscales where heat removal mainly relies on interfacial scattering.
引用
收藏
页数:4
相关论文
共 14 条
[1]   A microscopic formulation of the phonon transmission at the nanoscale [J].
Chalopin, Y. ;
Volz, S. .
APPLIED PHYSICS LETTERS, 2013, 103 (05)
[2]   SOLUTION OF LINEARIZED PHONON BOLTZMANN EQUATION [J].
GUYER, RA ;
KRUMHANS.JA .
PHYSICAL REVIEW, 1966, 148 (02) :766-&
[3]   Molecular dynamics simulation of interfacial thermal conductance between silicon and amorphous polyethylene [J].
Hu, Ming ;
Shenogin, Sergei ;
Keblinski, Pawel .
APPLIED PHYSICS LETTERS, 2007, 91 (24)
[4]   HEAT WAVES [J].
JOSEPH, DD ;
PREZIOSI, L .
REVIEWS OF MODERN PHYSICS, 1989, 61 (01) :41-73
[5]   Frequency dependence of the thermal conductivity of semiconductor alloys [J].
Koh, Yee Kan ;
Cahill, David G. .
PHYSICAL REVIEW B, 2007, 76 (07)
[6]   Thermal boundary resistance at silicon-silica interfaces by molecular dynamics simulations [J].
Lampin, E. ;
Nguyen, Q. -H. ;
Francioso, P. A. ;
Cleri, F. .
APPLIED PHYSICS LETTERS, 2012, 100 (13)
[7]   NONLOCAL THEORY OF THERMAL-CONDUCTIVITY [J].
MAHAN, GD ;
CLARO, F .
PHYSICAL REVIEW B, 1988, 38 (03) :1963-1969
[8]   Few layer graphene based superlattices as efficient thermal insulators [J].
Ni, Yuxiang ;
Chalopin, Yann ;
Volz, Sebastian .
APPLIED PHYSICS LETTERS, 2013, 103 (14)
[9]   FAST PARALLEL ALGORITHMS FOR SHORT-RANGE MOLECULAR-DYNAMICS [J].
PLIMPTON, S .
JOURNAL OF COMPUTATIONAL PHYSICS, 1995, 117 (01) :1-19
[10]   Interface thermal resistance and thermal rectification in hybrid graphene-graphane nanoribbons: A nonequilibrium molecular dynamics study [J].
Rajabpour, A. ;
Allaei, S. M. Vaez ;
Kowsary, F. .
APPLIED PHYSICS LETTERS, 2011, 99 (05)