Clebsch-Gordan coefficients of SU(3) in SU(2) and SO(3) bases

被引:31
作者
Rowe, DJ [1 ]
Bahri, C [1 ]
机构
[1] Univ Toronto, Dept Phys, Toronto, ON M5S 1A7, Canada
关键词
D O I
10.1063/1.1286768
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
New algorithms are developed for the purpose of optimizing the efficient calculation of SU(3) Clebsch-Gordan coefficients in both SU(2)- and SO(3)-coupled bases. The new algorithms make use of the fact that highest weight states in a tensor product space are easily identified by vector coherent state methods. The methods are developed for SU(3) but apply to other compact semi-simple Lie groups. (C) 2000 American Institute of Physics. [S0022-2488(00)00109-2].
引用
收藏
页码:6544 / 6565
页数:22
相关论文
共 51 条
[1]   USERS GUIDE TO FORTRAN PROGRAMS FOR WIGNER AND RACAH COEFFICIENTS OF SU3 [J].
AKIYAMA, Y ;
DRAAYER, JP .
COMPUTER PHYSICS COMMUNICATIONS, 1973, 5 (06) :405-415
[2]   EXPLICIT CANONICAL TENSOR-OPERATORS AND ORTHONORMAL COUPLING-COEFFICIENTS OF SU(3) [J].
ALISAUSKAS, S .
JOURNAL OF MATHEMATICAL PHYSICS, 1992, 33 (06) :1983-2004
[3]   EXPLICIT ORTHONORMAL CLEBSCH-GORDAN-COEFFICIENTS OF SU(3) [J].
ALISAUSKAS, S .
JOURNAL OF MATHEMATICAL PHYSICS, 1990, 31 (06) :1325-1332
[4]   Orthogonalization of the SU(n)superset of SO(n) projected states and SU(3)superset of U(2) isofactors [J].
Alisauskas, S .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1996, 29 (11) :2687-2704
[6]  
[Anonymous], 1964, Handbook of mathematical functions
[7]   ON REPRESENTATIONS OF SEMISIMPLE LIE GROUPS .2. [J].
BAIRD, GE ;
BIEDENHARN, LC .
JOURNAL OF MATHEMATICAL PHYSICS, 1963, 4 (12) :1449-&
[8]   ON THE REPRESENTATIONS OF THE SEMISIMPLE LIE GROUPS .4. A CANONICAL CLASSIFICATION FOR TENSOR OPERATORS IN SU3 [J].
BAIRD, GE ;
BIEDENHARN, LC .
JOURNAL OF MATHEMATICAL PHYSICS, 1964, 5 (12) :1730-+
[9]   CANONICAL DEFINITION OF WIGNER COEFFICIENTS IN UN [J].
BIEDENHARN, LC ;
GIOVANNINI, A ;
LOUCK, JD .
JOURNAL OF MATHEMATICAL PHYSICS, 1967, 8 (04) :691-+
[10]  
BIEDENHARN LC, 1968, COMMUN MATH PHYS, V8, P89